Horizontal Well Volumetric Fracturing Technology Integrating Fracturing, Energy Enhancement, and Imbibition for Shale Oil in Qingcheng Oilfield
-
摘要: 庆城油田页岩油储层低压、低脆性指数特征明显,是阻碍体积压裂后建立高效驱替渗流系统的重要因素,为此,研究了压裂、增能和渗吸(压增渗)一体化体积压裂技术。建立了页岩油储层类型精细划分方法;基于长期产液剖面测试所得矿场大数据,优化了不同储层类型改造策略;利用油藏数值模拟方法,优化了压增渗体积压裂技术关键参数。研究表明:Ⅰ+Ⅱ类储层改造段数占比 83.6%,产出占比 95.5%,为主要产能贡献段;Ⅲ类储层产出占比仅4.5%,对产能贡献有限,因此,应优先改造Ⅰ+Ⅱ类储层,选择性改造Ⅲ类储层;Ⅰ类和Ⅱ类储层进液强度最优区间分别为20~25 m3/m和 15~20 m3/m,增能方式为同步增能。庆城油田200余口页岩油水平井应用了压增渗一体化体积压裂技术,单井初期产油量由9.6 t/d提高至18.0 t/d,单井1年累计产油量由2 380 t提高至5256 t,单井估计最终可采量由1.8×104 t提高至2.6×104 t,取得了显著效果。该技术为其他同类非常规页岩油藏高效开发提供了技术借鉴。Abstract: Shale oil reservoirs in Qingcheng Oilfield have distinct characteristics of low pressure and low brittleness index, which significantly hinder the establishment of an efficient displacement seepage system after volumetric fracturing. In light of this, a volumetric fracturing technology was developed integrating fracturing, energy enhancement, and imbibition. A new method for refined and detailed classification of shale oil reservoirs was formulated. Then, stimulation strategies for different reservoir types were optimized with field big data obtained from tests on long-term fluid production profiles. Finally, the key parameters of the volumetric fracturing technology integrating fracturing, energy enhancement, and imbibition were optimized through the numerical simulation of oil reservoirs. The research results showed that type Ⅰ and type Ⅱ reservoirs, making up 83.6% of the stimulated sections and 95.5% of the total production, were the main contributions to productivity. In contrast, the productivity contribution of type Ⅲ reservoirs accounted for only 4.5% of the total production. Therefore, stimulation treatment priority should be given to type Ⅰ and type Ⅱ reservoirs while only some selective sections of type Ⅲ reservoirs should be stimulated. The optimal intervals of fluid injection intensity for type I and type II reservoirs are 20–25 m3/m and 15–20 m3/m respectively, with synchronous energy enhancement. The volumetric fracturing technology was applied to more than 200 horizontal shale oil wells in Qingcheng Oilfield. The initial single-well production was increased from 9.6 t/d to 18.0 t/d, the single-well annual cumulative oil production was enhanced from 2 380 t to 5256 t, and the single-well estimated ultimate recovery (EUR) was improved from 1.8×104 t to 2.6×104 t. This technology has provided a technical reference for the efficient development of similar unconventional shale oil reservoirs.
-
表 1 庆城油田页岩油储层与国内外页岩油储层特征参数对比
Table 1. Characteristic parameter comparison of shale oil reservoirs in Qingcheng Oilfield and those in China and other countries
对比地层 沉积
环境埋深/
m油层厚度/
m孔隙
度,%渗透率/
mD含油饱和
度,%气油比/
(m3·t−1)原油黏度/
(mPa·s)压力系数 水平应
力差/
MPa脆性指
数,%鄂尔多斯盆地延长组 湖相 1 600~
2 2005~15 6.0~11.0 0.110~
0.14067.7~72.4 75~122 1.21~1.96 0.77~0.84 4~6 35~45 准噶尔盆地芦草沟组 湖相 2 700~
3 90010~13 8.0~14.6 0.010~
0.01278.0~80.0 18~22 11.70~21.50 1.20~1.60 5~9 50~51 三塘湖盆地条湖组 湖相 2 000~
2 8005~20 8.0~18.0 0.100~
0.50055.0~76.5 58.00~83.00 0.90 1~5 31~54 松辽盆地白垩系 湖相 1 700~
2 20010~30 5.0~18.0 0.020~
0.50048.0~55.0 4.00~8.00 1.10~1.32 3~6 北美二叠纪盆地 浅海相 2 134~
2 895400~600 8.0~12.0 0.010~
1.00075.0~88.0 50~140 0.15~0.53 1.05~1.50 1~3 45~60 表 2 庆城油田页岩油储层孔隙尺度及孔隙类型划分
Table 2. Pore scale and pore type division of shale oil reservoirs in Qingcheng Oilfield
孔隙种类 孔隙半径/μm 孔隙类型 孔隙数量 大孔隙 >20.0 原生粒间孔
铸模孔少 中孔隙 10.0~20.0 粒间孔隙
颗粒溶孔
岩屑溶孔较少 小孔隙 2.0~10.0 残余粒间孔
粒内溶孔
杂基溶孔较多 微孔隙 0.5~2.0 残余粒间孔
溶蚀微孔隙
晶间孔隙
黏土矿物晶间孔多 纳米孔隙 ≤0.5 微溶孔
晶间孔隙
晶内孔隙很多 表 3 华H6平台水平井压裂参数及开发效果对比
Table 3. Comparison of fracturing parameters and development effect of horizontal wells in Platform Hua H6
井号 水平
段长
度/mI+II类
长度/
m压裂
段数裂缝密度/(簇·
(100m)–1)加砂
量/m3入地液
量/m31年累
计产油量/t华H6-1 1529 694 22 8.3 4158 31037 4936 华H6-2 1564 1139 25 8.6 2500 33498 4714 华H6-3 1468 454 23 10.3 2577 32527 4356 华H6-4 1260 764 19 10.5 3233 26185 4069 华H6-5 1323 841 19 8.9 2587 25596 3420 华H6-6 2 029 1057 27 10.2 3062 53780 5225 华H6-7 1588 1157 23 7.9 2575 27933 5766 华H6-8 2110 1250 26 11.7 2440 52604 4998 华H6-9 1 959 1420 28 12.4 5601 43893 3315 华H6-11 1252 779 16 7.7 5560 22557 4313 华H6-12 1191 957 19 8.7 4649 26709 5343 -
[1] 雷群,翁定为,熊生春,等. 中国石油页岩油储集层改造技术进展及发展方向[J]. 石油勘探与开发,2021,48(5):1035–1042.LEI Qun, WENG Dingwei, XIONG Shengchun, et al. Progress and development directions of shale oil reservoir stimulation technology of China National Petroleum Corporation[J]. Petroleum Exploration and Development, 2021, 48(5): 1035–1042. [2] 李国欣,朱如凯. 中国石油非常规油气发展现状、挑战与关注问题[J]. 中国石油勘探,2020,25(2):1–13. doi: 10.3969/j.issn.1672-7703.2020.02.001LI Guoxin, ZHU Rukai. Progress, challenges and key issues of unconventional oil and gas development of CNPC[J]. China Petroleum Exploration, 2020, 25(2): 1–13. doi: 10.3969/j.issn.1672-7703.2020.02.001 [3] 焦方正,邹才能,杨智. 陆相源内石油聚集地质理论认识及勘探开发实践[J]. 石油勘探与开发,2020,47(6):1067–1078.JIAO Fangzheng, ZOU Caineng, YANG Zhi. Geological theory and exploration & development practice of hydrocarbon accumulation inside continental source kitchens[J]. Petroleum Exploration and Development, 2020, 47(6): 1067–1078. [4] 付金华,李士祥,牛小兵,等. 鄂尔多斯盆地三叠系长7段页岩油地质特征与勘探实践[J]. 石油勘探与开发,2020,47(5):870–883.FU Jinhua, LI Shixiang, NIU Xiaobing, et al. Geological characteristics and exploration of shale oil in Chang 7 Member of Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(5): 870–883. [5] 付金华,牛小兵,淡卫东,等. 鄂尔多斯盆地中生界延长组长7段页岩油地质特征及勘探开发进展[J]. 中国石油勘探,2019,24(5):601–614. doi: 10.3969/j.issn.1672-7703.2019.05.007FU Jinhua, NIU Xiaobing, DAN Weidong, et al. The geological characteristics and the progress on exploration and development of shale oil in Chang7 Member of Mesozoic Yanchang Formation, Ordos Basin[J]. China Petroleum Exploration, 2019, 24(5): 601–614. doi: 10.3969/j.issn.1672-7703.2019.05.007 [6] 付锁堂,姚泾利,李士祥,等. 鄂尔多斯盆地中生界延长组陆相页岩油富集特征与资源潜力[J]. 石油实验地质,2020,42(5):698–710. doi: 10.11781/sysydz202005698FU Suotang, YAO Jingli, LI Shixiang, et al. Enrichment characteristics and resource potential of continental shale oil in Mesozoic Yanchang Formation, Ordos Basin[J]. Petroleum Geology and Experiment, 2020, 42(5): 698–710. doi: 10.11781/sysydz202005698 [7] 李士祥,牛小兵,柳广弟,等. 鄂尔多斯盆地延长组长7段页岩油形成富集机理[J]. 石油与天然气地质,2020,41(4):719–729. doi: 10.11743/ogg20200406LI Shixiang, NIU Xiaobing, LIU Guangdi, et al. Formation and accumulation mechanism of shale oil in the 7th Member of Yanchang Formation, Ordos Basin[J]. Oil & Gas Geology, 2020, 41(4): 719–729. doi: 10.11743/ogg20200406 [8] 付金华,郭雯,李士祥,等. 鄂尔多斯盆地长7段多类型页岩油特征及勘探潜力[J]. 天然气地球科学,2021,32(12):1749–1761.FU Jinhua, GUO Wen, LI Shixiang, et al. Characteristics and exploration potential of muti-type shale oil in the 7th Member of Yanchang Formation, Ordos Basin[J]. Natural Gas Geoscience, 2021, 32(12): 1749–1761. [9] 李树同,李士祥,刘江艳,等. 鄂尔多斯盆地长7段纯泥页岩型页岩油研究中的若干问题与思考[J]. 天然气地球科学,2021,32(12):1785–1796.LI Shutong, LI Shixiang, LIU Jiangyan, et al. Some problems and thoughts on the study of pure shale-type shale oil in the 7th Member of Yanchang Formation in Ordos Basin[J]. Natural Gas Geoscience, 2021, 32(12): 1785–1796. [10] 马文忠,王永宏,张三,等. 鄂尔多斯盆地陕北地区长7段页岩油储层微观特征及控制因素[J]. 天然气地球科学,2021,32(12):1810–1821.MA Wenzhong, WANG Yonghong, ZHANG San, et al. Microscopic characteristics and controlling factors of Chang 7 Member shale oil reservoir in Northern Shaanxi Area, Ordos Basin[J]. Natural Gas Geoscience, 2021, 32(12): 1810–1821. [11] 张斌,毛治国,张忠义,等. 鄂尔多斯盆地三叠系长7段黑色页岩形成环境及其对页岩油富集段的控制作用[J]. 石油勘探与开发,2021,48(6):1127–1136.ZHANG Bin, MAO Zhiguo, ZHANG Zhongyi, et al. Black shale formation environment and its control on shale oil enrichment in Triassic Chang 7 Member, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2021, 48(6): 1127–1136. [12] 周庆凡,金之钧,杨国丰,等. 美国页岩油勘探开发现状与前景展望[J]. 石油与天然气地质,2019,40(3):469–477. doi: 10.11743/ogg20190303ZHOU Qingfan, JIN Zhijun, YANG Guofeng, et al. Shale oil exploration and production in the U. S. : status and outlook[J]. Oil & Gas Geology, 2019, 40(3): 469–477. doi: 10.11743/ogg20190303 [13] 赵振峰,李楷,赵鹏云,等. 鄂尔多斯盆地页岩油体积压裂技术实践与发展建议[J]. 石油钻探技术,2021,49(4):85–91. doi: 10.11911/syztjs.2021075ZHAO Zhenfeng, LI Kai, ZHAO Pengyun, et al. Practice and development suggestions for volumetric fracturing technology for shale oil in the Ordos Basin[J]. Petroleum Drilling Techniques, 2021, 49(4): 85–91. doi: 10.11911/syztjs.2021075 [14] BAI Xiaohu, ZHANG Kuangsheng, TANG Meirong, et al. Development and application of cyclic stress fracturing for tight oil reservoir in Ordos Basin[R]. SPE 197746, 2019. [15] 李杉杉,孙虎,张冕,等. 长庆油田陇东地区页岩油水平井细分切割压裂技术[J]. 石油钻探技术,2021,49(4):92–98. doi: 10.11911/syztjs.2021080LI Shanshan, SUN Hu, ZHANG Mian, et al. Subdivision cutting fracturing technology for horizontal shale oil wells in the Longdong Area of the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 92–98. doi: 10.11911/syztjs.2021080 [16] 慕立俊,赵振峰,李宪文,等. 鄂尔多斯盆地页岩油水平井细切割体积压裂技术[J]. 石油与天然气地质,2019,40(3):626–635. doi: 10.11743/ogg20190317MU Lijun, ZHAO Zhenfeng, LI Xianwen, et al. Fracturing technology of stimulated reservoir volume with subdivision cutting for shale oil horizontal wells in Ordos Basin[J]. Oil & Gas Geology, 2019, 40(3): 626–635. doi: 10.11743/ogg20190317 [17] FU Suotang, YU Jian, ZHANG Kuangsheng, et al. Investigation of multistage hydraulic fracture optimization design methods in horizontal shale oil wells in the Ordos Basin[J]. Geofluids, 2020: 8818903. [18] ZHANG Kuangsheng, ZHUANG Xiangqi, TANG Meirong, et al. Integrated optimisation of fracturing design to fully unlock the Chang 7 tight oil production potential in Ordos Basin[R]. URTEC 198315, 2019. [19] ZHANG Kuangsheng, TANG Meirong, DU Xianfei, et al. Application of integrated geology and geomechanics to stimulation optimization workflow to maximize well potential in a tight oil reservoir, Ordos Basin, northern central China[R]. ARMA-2019-2187, 2019. [20] 张矿生,唐梅荣,杜现飞,等. 鄂尔多斯盆地页岩油水平井体积压裂改造策略思考[J]. 天然气地球科学,2021,32(12):1859–1866.ZHANG Kuangsheng, TANG Meirong, DU Xianfei, et al. Considerations on the strategy of volume fracturing for shale oil horizontal wells in Ordos Basin[J]. Natural Gas Geoscience, 2021, 32(12): 1859–1866. [21] 焦方正. 鄂尔多斯盆地页岩油缝网波及研究及其在体积开发中的应用[J]. 石油与天然气地质,2021,42(5):1181–1188. doi: 10.11743/ogg20210515JIAO Fangzheng. FSV estimation and its application to development of shale oil via volume fracturing in the Ordos Basin[J]. Oil & Gas Geology, 2021, 42(5): 1181–1188. doi: 10.11743/ogg20210515 [22] 许琳,常秋生,杨成克,等. 吉木萨尔凹陷二叠系芦草沟组页岩油储层特征及含油性[J]. 石油与天然气地质,2019,40(3):535–549. doi: 10.11743/ogg20190309XU Lin, CHANG Qiusheng, YANG Chengke, et al. Characteristics and oil-bearing capability of shale oil reservoir in the Permian Lucaogou Formation, Jimusaer Sag[J]. Oil & Gas Geology, 2019, 40(3): 535–549. doi: 10.11743/ogg20190309 [23] 王小军,梁利喜,赵龙,等. 准噶尔盆地吉木萨尔凹陷芦草沟组含油页岩岩石力学特性及可压裂性评价[J]. 石油与天然气地质,2019,40(3):661–668. doi: 10.11743/ogg20190321WANG Xiaojun, LIANG Lixi, ZHAO Long, et al. Rock mechanics and fracability evaluation of the Lucaogou Formation oil shales in Jimusaer Sag, Junggar Basin[J]. Oil & Gas Geology, 2019, 40(3): 661–668. doi: 10.11743/ogg20190321 [24] 陈作,刘红磊,李英杰,等. 国内外页岩油储层改造技术现状及发展建议[J]. 石油钻探技术,2021,49(4):1–7. doi: 10.11911/syztjs.2021081CHEN Zuo, LIU Honglei, LI Yingjie,et al. The current status and development suggestions for shale oil reservoir stimulation at home and abroad[J]. Petroleum Drilling Techniques, 2021, 49(4): 1–7. doi: 10.11911/syztjs.2021081 [25] 闫林,陈福利,王志平,等. 我国页岩油有效开发面临的挑战及关键技术研究[J]. 石油钻探技术,2020,48(3):63–69. doi: 10.11911/syztjs.2020058YAN Lin, CHEN Fuli, WANG Zhiping,et al. Challenges and technical countermeasures for effective development of shale oil in China[J]. Petroleum Drilling Techniques, 2020, 48(3): 63–69. doi: 10.11911/syztjs.2020058 [26] 欧阳伟平, 张冕, 孙虎,等. 页岩油水平井压裂渗吸驱油数值模拟研究[J]. 石油钻探技术,2021,49(4):143–149. doi: 10.11911/syztjs.2021083OUYANG Weiping, ZHANG Mian, SUN Hu, et al. Numerical simulation of Oil displacement by fracturing imbibition in horizontal shale oil wells[J]. Petroleum Drilling Techniques, 2021, 49(4): 143–149. doi: 10.11911/syztjs.2021083 -