吉木萨尔页岩油下甜点二类区水平井压裂技术

陈超峰 王波 王佳 许译文 秦莹民 李雪彬

陈超峰, 王波, 王佳, 许译文, 秦莹民, 李雪彬. 吉木萨尔页岩油下甜点二类区水平井压裂技术[J]. 石油钻探技术, 2021, 49(4): 112-117. doi: 10.11911/syztjs.2021089
引用本文: 陈超峰, 王波, 王佳, 许译文, 秦莹民, 李雪彬. 吉木萨尔页岩油下甜点二类区水平井压裂技术[J]. 石油钻探技术, 2021, 49(4): 112-117. doi: 10.11911/syztjs.2021089
CHEN Chaofeng, WANG Bo, WANG Jia, XU Yiwen, QIN Yingmin, LI Xuebin. Fracturing Technologies for Horizontal Wells in the Second-Class Shale Oil Reservoirs of the Lower Sweet Spot Areas in Jimusar[J]. Petroleum Drilling Techniques, 2021, 49(4): 112-117. doi: 10.11911/syztjs.2021089
Citation: CHEN Chaofeng, WANG Bo, WANG Jia, XU Yiwen, QIN Yingmin, LI Xuebin. Fracturing Technologies for Horizontal Wells in the Second-Class Shale Oil Reservoirs of the Lower Sweet Spot Areas in Jimusar[J]. Petroleum Drilling Techniques, 2021, 49(4): 112-117. doi: 10.11911/syztjs.2021089

吉木萨尔页岩油下甜点二类区水平井压裂技术

doi: 10.11911/syztjs.2021089
基金项目: 中国石油重大科技专项“准噶尔盆地致密油储层改造关键技术研究与现场试验”(编号:2017E-0414)部分研究内容
详细信息
    作者简介:

    陈超峰(1971—),男,河南杞县人,1996年毕业于石油大学(华东)石油工程专业,高级工程师,主要从事试油试井和储层改造技术研究。E-mail:ccf@petrochina.com.cn

  • 中图分类号: TE357

Fracturing Technologies for Horizontal Wells in the Second-Class Shale Oil Reservoirs of the Lower Sweet Spot Areas in Jimusar

  • 摘要: 为了解决准噶尔盆地吉木萨尔页岩油因其流度低和储层层理发育缝高受限导致水平井提产困难的问题,提高下甜点二类储层的有效动用程度,开展了密切割改造提升缝控程度、薄互层穿层压裂增加纵向动用程度技术攻关。研究了密切割改造技术,将平均簇间距缩短至13.6 m,大幅提高了页岩储层缝控程度;提高了直井压裂施工的排量及冻胶用量,验证了下甜点二类储层具备穿层压裂的可行性,形成了以水平井12~14 m3/min大排量、冻胶和滑溜水多段塞泵注、中小粒径支撑剂组合和2.7 m3/m高加砂强度等为核心的穿层压裂关键技术,保证了层理转折裂缝有效支撑。现场试验表明,该技术能够提高水平井压裂动用体积,二类储层试验水平井压裂后第1年累计产油量达9 183 t,是前期水平井产油量的3倍以上。研究结果表明,水平井密切割穿层压裂技术可以解决二类储层多薄油层难动用的问题,为页岩油二类区有效动用提供了新的技术途径。
  • 图  1  不同簇间距的压力波及范围模拟结果

    Figure  1.  Simulation results of pressure sweep range with different inter-cluster spacing

    图  2  不同簇间距下第1年累计产油量预测结果

    Figure  2.  Forecast of annual cumulative oil production with different inter-cluster spacing

    图  3  加砂强度对累计产油量的影响

    Figure  3.  Influence of sand addition on cumulative oil production

    图  4  JHWA1井压裂施工曲线

    Figure  4.  Fracturing curve of Well JHWA1

    表  1  JA2井测试验窜施工参数

    Table  1.   Construction parameters of the channeling test in Well JA2

    测试阶段时间油管(目的层2 773.50~2 776.50 m) 套管(目的层2 762.00~2 768.00 m)结论
    工作状况抽汲液面/m产液量/m3 工作状况套管压力/MPa产液量/m3
    第1阶段第1天抽汲1 2506.34 关井2.30 两层未窜通
    第2天抽汲1 5657.22 关井2.60
    第3天抽汲1 5705.11 关井3.00
    第4天抽汲1 5603.34 关井3.20
    第2阶段第5天测液面1 4900 开井0 14.60两层未窜通
    第6天测液面1 4300 开井0 13.55
    第7天测液面1 3800 开井0 12.67
    第8天测液面1 3300 开井0 12.49
    第3阶段第9天测液面1 2900 加压6次10.0 0 两层未窜通
    下载: 导出CSV

    表  2  试验井施工参数及阵列声波测井解释结果

    Table  2.   Construction parameters of the test wells and interpretation results of array acoustic logging

    井号井段/m隔层应力差/MPa隔层厚度/m冻胶排量/(m3·min–1冻胶用量/m3解释缝高/m解释缝高范围/m
    JB13 498~3 5028.02.010.0594.0433 467~3 510
    JB22 944~2 9545.02.0 8.6510.0152 943~2 958
    JB33 279~3 2835.01.010.0420.8193 268~3 287
    下载: 导出CSV
  • [1] 高阳,叶义平,何吉祥,等. 准噶尔盆地吉木萨尔凹陷陆相页岩油开发实践[J]. 中国石油勘探,2020,25(2):133–141. doi:  10.3969/j.issn.1672-7703.2020.02.013

    GAO Yang, YE Yiping, HE Jixiang, et al. Development practice of continental shale oil in Jimsar sag in the Junggar Basin[J]. China Petroleum Exploration, 2020, 25(2): 133–141. doi:  10.3969/j.issn.1672-7703.2020.02.013
    [2] 郭旭光,何文军,杨森,等. 准噶尔盆地页岩油 “甜点区” 评价与关键技术应用:以吉木萨尔凹陷二叠系芦草沟组为例[J]. 天然气地球科学,2019,30(8):1168–1179. doi:  10.11764/j.issn.1672-1926.2019.05.020

    GUO Xuguang, HE Wenjun, YANG Sen, et al. Evaluation and application of key technologies of “sweet area” of shale oil in Junggar Basin: case study of Permian Lucaogou Formation in Jimusar Depression[J]. Natural Gas Geoscience, 2019, 30(8): 1168–1179. doi:  10.11764/j.issn.1672-1926.2019.05.020
    [3] 许琳,常秋生,杨成克,等. 吉木萨尔凹陷二叠系芦草沟组页岩油储层特征及含油性[J]. 石油与天然气地质,2019,40(3):535–549. doi:  10.11743/ogg20190309

    XU Lin, CHANG Qiusheng, YANG Chengke, et al. Characteristics and oil-bearing capability of shale oil reservoir in the Permian Lucaogou Formation,Jimusaer sag[J]. Oil & Gas Geology, 2019, 40(3): 535–549. doi:  10.11743/ogg20190309
    [4] 闫林,陈福利,王志平,等. 我国页岩油有效开发面临的挑战及关键技术研究[J]. 石油钻探技术,2020,48(3):63–69. doi:  10.11911/syztjs.2020058

    YAN Lin, CHEN Fuli, WANG Zhiping, et al. Challenges and technical countermeasures for effective development of shale oil in China[J]. Petroleum Drilling Techniques, 2020, 48(3): 63–69. doi:  10.11911/syztjs.2020058
    [5] 匡立春,侯连华,杨智,等. 陆相页岩油储层评价关键参数及方法[J]. 石油学报,2021,42(1):1–14. doi:  10.7623/syxb202101001

    KUANG Lichun, HOU Lianhua, YANG Zhi, et al. Key parameters and methods of lacustrine shale oil reservoir characterization[J]. Acta Petrolei Sinica, 2021, 42(1): 1–14. doi:  10.7623/syxb202101001
    [6] 吴宝成,李建民,邬元月,等. 准噶尔盆地吉木萨尔凹陷芦草沟组页岩油上甜点地质工程一体化开发实践[J]. 中国石油勘探,2019,24(5):679–690. doi:  10.3969/j.issn.1672-7703.2019.05.014

    WU Baocheng, LI Jianmin, WU Yuanyue, et al. Development practices of geology-engineering integration on upper sweet spots of Lucaogou Formation shale oil in Jimsar Sag, Junggar Basin[J]. China Petroleum Exploration, 2019, 24(5): 679–690. doi:  10.3969/j.issn.1672-7703.2019.05.014
    [7] 苏皓,雷征东,张荻萩,等. 致密油藏体积压裂水平井参数优化研究[J]. 岩性油气藏,2018,30(4):140–148.

    SU Hao, LEI Zhengdong, ZHANG Diqiu, et al. Volume fracturing parameters optimization of horizontal well in tight reservoir[J]. Lithologic Reservoirs, 2018, 30(4): 140–148.
    [8] 李立,庞江平,瞿子易. 钻探现场矿物自动化分析技术进展及应用前景[J]. 天然气工业,2018,38(6):46–52. doi:  10.3787/j.issn.1000-0976.2018.06.006

    LI Li, PANG Jiangping, QU Ziyi. Progress and application prospect of on-site automatic mineral analysis technologies[J]. Natural Gas Industry, 2018, 38(6): 46–52. doi:  10.3787/j.issn.1000-0976.2018.06.006
    [9] 唐谢,唐家琼,庞江平,等. 长宁地区页岩储集层录井随钻解释评价方法[J]. 录井工程,2015,26(4):11–16. doi:  10.3969/j.issn.1672-9803.2015.04.003

    TANG Xie, TANG Jiaqiong, PANG Jiangping, et al. Interpretation and evaluation method of mud logging while drilling for shale reservoir in Changning Area[J]. Mud Logging Engineering, 2015, 26(4): 11–16. doi:  10.3969/j.issn.1672-9803.2015.04.003
    [10] 卢宇,赵志恒,李海涛,等. 页岩储层多簇限流射孔裂缝扩展规律[J]. 天然气地球科学,2021,32(2):268–273.

    LU Yu, ZHAO Zhiheng, LI Haitao, et al. Study on the law of fracture propagation from multiple cluster limited entry perforation in shale reservoir[J]. Natural Gas Geoscience, 2021, 32(2): 268–273.
    [11] 许江文,李建民,邬元月,等. 玛湖致密砾岩油藏水平井体积压裂技术探索与实践[J]. 中国石油勘探,2019,24(2):241–249.

    XU Jiangwen, LI Jianmin, WU Yuanyue, et al. Exploration and practice of horizontal well volume fracturing technology in Mahu tight conglomerate reservoir[J]. China Petroleum Exploration, 2019, 24(2): 241–249.
    [12] 刘合,匡立春,李国欣,等. 中国陆相页岩油完井方式优选的思考与建议[J]. 石油学报,2020,41(4):489–496. doi:  10.7623/syxb202004011

    LIU He, KUANG Lichun, LI Guoxin, et al. Considerations and suggestions on optimizing completion methods of continental shale oil in China[J]. Acta Petrolei Sinica, 2020, 41(4): 489–496. doi:  10.7623/syxb202004011
    [13] 苏勤芹. 吉木萨尔凹陷致密油烃源岩测井评价及储层物性研究[D]. 北京: 中国地质大学(北京), 2016.

    SU Qinqin. Study of well logging evaluation of hydrocarbon source rocks and reservoir physical properties characteristics of tight oil in Jimusar depression[D]. Beijing: China University of Geo-sciences (Beijing), 2016.
    [14] 刘丽,闵令元,孙志刚,等. 济阳坳陷页岩油储层孔隙结构与渗流特征[J]. 油气地质与采收率,2021,28(1):106–114.

    LIU Li, MIN Lingyuan, SUN Zhigang, et al. Pore structure and percolation characteristics in shale oil reservoir of Jiyang Depres-sion[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(1): 106–114.
    [15] 杨成亮. 页岩油藏非线性渗流特征研究[D]. 成都: 西南石油大学, 2019.

    YANG Chengliang. Study on the nonlinear seepage characteristics of shale reservoir[D]. Chengdu: Southwest Petroleum University, 2019.
    [16] 刘礼军,姚军,孙海,等. 考虑启动压力梯度和应力敏感的页岩油井产能分析[J]. 石油钻探技术,2017,45(5):84–91.

    LIU Lijun, YAO Jun, SUN Hai, et al. The effect of threshold pressure gradient and stress sensitivity on shale oil reservoir productivity[J]. Petroleum Drilling Techniques, 2017, 45(5): 84–91.
    [17] 李准,吴晓东,韩国庆,等. 考虑裂缝导流能力时效性的多级压裂水平井产能半解析模型[J]. 石油钻采工艺,2019,41(3):354–362.

    LI Zhun, WU Xiaodong, HAN Guoqing, et al. Semi-analytical model of multi-stage fractured horizontal well productivity considering time-dependent fracture conductivity[J]. Oil Drilling & Production Technology, 2019, 41(3): 354–362.
    [18] 狄伟. 支撑剂在裂缝中的运移规律及铺置特征[J]. 断块油气田,2019,26(3):355–359.

    DI Wei. Migration law and placement characteristics of proppant in fractures[J]. Fault-Block Oil & Gas Field, 2019, 26(3): 355–359.
  • [1] 张衍君, 葛洪魁, 徐田录, 黄文强, 曾会, 陈浩.  体积压裂裂缝前端粉砂分布规律试验研究, 石油钻探技术. doi: 10.11911/syztjs.2021065
    [2] 陈海宇, 王新东, 林晶, 陈涛, 李辉, 范琳.  新疆吉木萨尔页岩油超长水平段水平井钻井关键技术, 石油钻探技术. doi: 10.11911/syztjs.2021036
    [3] 田福春, 刘学伟, 张胜传, 张高峰, 邵力飞, 陈紫薇.  大港油田陆相页岩油滑溜水连续加砂压裂技术, 石油钻探技术. doi: 10.11911/syztjs.2021021
    [4] 王磊, 盛志民, 赵忠祥, 宋道海, 王丽峰, 王刚.  吉木萨尔页岩油水平井大段多簇压裂技术, 石油钻探技术. doi: 10.11911/syztjs.2021091
    [5] 王金刚, 孙虎, 任斌, 尹俊禄.  填砂分段压裂技术在页岩油套变水平井的应用, 石油钻探技术. doi: 10.11911/syztjs.2021084
    [6] 周双君, 朱立鑫, 杨森, 毛俊, 李萧杰, 黄维安.  吉木萨尔页岩油区块防漏堵漏技术, 石油钻探技术. doi: 10.11911/syztjs.2021034
    [7] 李杉杉, 孙虎, 张冕, 池晓明, 刘欢.  长庆油田陇东地区页岩油水平井细分切割压裂技术, 石油钻探技术. doi: 10.11911/syztjs.2021080
    [8] 赵振峰, 李楷, 赵鹏云, 陶亮.  鄂尔多斯盆地页岩油体积压裂技术实践与发展建议, 石油钻探技术. doi: 10.11911/syztjs.2021075
    [9] 欧阳伟平, 张冕, 孙虎, 张云逸, 池晓明.  页岩油水平井压裂渗吸驱油数值模拟研究, 石油钻探技术. doi: 10.11911/syztjs.2021083
    [10] 郝丽华, 甘仁忠, 潘丽燕, 阮东, 刘成刚.  玛湖凹陷风城组页岩油巨厚储层直井体积压裂关键技术, 石油钻探技术. doi: 10.11911/syztjs.2021092
    [11] 柳伟荣, 倪华峰, 王学枫, 石仲元, 谭学斌, 王清臣.  长庆油田陇东地区页岩油超长水平段水平井钻井技术, 石油钻探技术. doi: 10.11911/syztjs.2020029
    [12] 曾波, 王星皓, 黄浩勇, 张柟乔, 岳文翰, 邓琪.  川南深层页岩气水平井体积压裂关键技术, 石油钻探技术. doi: 10.11911/syztjs.2020073
    [13] 李宪文, 刘顺, 陈强, 苏玉亮, 盛广龙.  考虑复杂裂缝网络的致密油藏水平井体积压裂改造效果评价, 石油钻探技术. doi: 10.11911/syztjs.2019126
    [14] 田林海, 屈刚, 雷鸣, 于德成, 张伟.  玛湖油田玛18井区体积压裂对钻井作业干扰问题的探讨, 石油钻探技术. doi: 10.11911/syztjs.2019023
    [15] 赵崇镇.  新场气田须五致密气藏缝网压裂技术, 石油钻探技术. doi: 10.11911/syztjs.201506013
    [16] 彭春耀.  层状页岩水力压裂裂缝与岩体弱面的干扰机理研究, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2014.04.006
    [17] 廖腾彦, 余丽彬, 李俊胜.  吉木萨尔致密砂岩油藏工厂化水平井钻井技术, 石油钻探技术. doi: 10.11911/syztjs.201406006
    [18] 马天寿, 陈平.  层理页岩水平井井周剪切失稳区域预测方法, 石油钻探技术. doi: 10.11911/syztjs.201405005
    [19] 蒋廷学.  页岩油气水平井压裂裂缝复杂性指数研究及应用展望, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2013.02.002
    [20] 金智荣, 张华丽, 周继东, 王进涛.  薄互层大型压裂组合加砂技术研究与应用, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2013.06.017
  • 加载中
图(4) / 表ll (2)
计量
  • 文章访问数:  167
  • HTML全文浏览量:  63
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-10
  • 修回日期:  2021-06-22
  • 网络出版日期:  2021-07-15
  • 刊出日期:  2021-08-25

目录

    /

    返回文章
    返回