长庆油田华H50-7井超长水平段钻井液技术

胡祖彪 张建卿 王清臣 吴付频 韩成福 柳伟荣

胡祖彪, 张建卿, 王清臣, 吴付频, 韩成福, 柳伟荣. 长庆油田华H50-7井超长水平段钻井液技术[J]. 石油钻探技术, 2020, 48(4): 28-36. doi: 10.11911/syztjs.2020050
引用本文: 胡祖彪, 张建卿, 王清臣, 吴付频, 韩成福, 柳伟荣. 长庆油田华H50-7井超长水平段钻井液技术[J]. 石油钻探技术, 2020, 48(4): 28-36. doi: 10.11911/syztjs.2020050
HU Zubiao, ZHANG Jianqing, WANG Qingchen, WU Fuping, HAN Chengfu, LIU Weirong. Drilling Fluid Technology for Ultra-Long Horizontal Section of Well Hua H50-7 in the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(4): 28-36. doi: 10.11911/syztjs.2020050
Citation: HU Zubiao, ZHANG Jianqing, WANG Qingchen, WU Fuping, HAN Chengfu, LIU Weirong. Drilling Fluid Technology for Ultra-Long Horizontal Section of Well Hua H50-7 in the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(4): 28-36. doi: 10.11911/syztjs.2020050

长庆油田华H50-7井超长水平段钻井液技术

doi: 10.11911/syztjs.2020050
详细信息
    作者简介:

    胡祖彪(1969—),男,甘肃兰州人,1991年毕业于承德石油高等专科学校油田应用化学专业,2010年获西安石油大学石油工程专业学士学位,高级工程师,主要从事钻井液技术研究与管理工作。E-mail:zjs1huzubiao@cnpc.com.cn

  • 中图分类号: TE254

Drilling Fluid Technology for Ultra-Long Horizontal Section of Well Hua H50-7 in the Changqing Oilfield

  • 摘要: 长庆油田陇东地区华H50-7井是一口超长水平段水平井,水平段长达 4 088.00 m,钻遇泥岩层和断层,钻进过程中降摩减阻困难、井眼清洁难度大、泥岩层防塌和断层防漏堵漏难度大。为此,优选了水基钻井液,并提高钻井液的润滑性和抑制性,以降低摩阻和防止泥岩层坍塌;针对不同漏失情况,制定了相应的防漏堵漏技术措施,以解决断层防漏堵漏问题。华H50-7井应用了优选的水基钻井液,采取了制定的防漏堵漏技术,钻井过程中钻井液的润滑性和抑制性稳定,与使用原水基钻井液的邻井相比,下放钻柱和套管时的摩阻降低显著,发生井漏后均成功堵漏,未出现井眼失稳问题。华H50-7井的顺利完钻表明,优选水基钻井液、采取针对性防漏堵漏技术措施,可以解决陇东地区超长水平段水平井钻进中托压严重、易井眼失稳、水平段地层造浆严重和水平段堵漏难度大的问题,这也为将来钻更长水平段水平井积累了经验。
  • 图  1  华H50-7井实钻井身结构

    Figure  1.  Actual casing program of Well Hua H50-7

    图  2  超分子凝胶黏附能力和抗拉伸能力测试结果

    Figure  2.  Test results of adhesion and tensile strength of supramolecular gel

    图  3  华H50-7井和邻井的水平段钻具下放摩阻

    Figure  3.  RIH frictions in horizontal sections of Well Hua H50-7 and adjacent wells

    图  4  华H50-7井和邻井的水平段钻井液固相含量

    Figure  4.  Solid content of drilling fluid in horizontal sections of Well Hua H50-7 and adjacent wells

    图  5  华H50-7井和邻井的水平段钻井液MBT

    Figure  5.  MBT of drilling fluids in horizontal sections of Well Hua H50-7 and adjacent wells

    表  1  不同质量分数抑制剂溶液的水活度

    Table  1.   Water activity of different inhibitor solutions

    质量分数,
    %
    水活度
    CQFY-3NaClKClHCOONaHCOOKCaCl2
    100.9170.9310.9420.9410.9570.942
    150.8640.8980.9080.9290.9320.908
    200.7110.8680.8980.9120.9040.899
    250.6960.8350.8830.88870.8830.884
    300.5220.7980.8640.8630.8610.793
    下载: 导出CSV

    表  2  岩屑在不同抑制剂溶液中的回收率

    Table  2.   Recovery rate of cuttings in different inhibitor solutions

    抑制剂岩屑回收率,%表观黏度上升率,%
    一次二次
    CQFY-356.4641.7812.57
    NaCl39.8418.5221.53
    KCl43.4622.6617.86
    HCOONa36.1419.1324.71
    HCOOK44.7423.6119.62
    下载: 导出CSV

    表  3  加入不同增黏剂前后基浆的流变性能

    Table  3.   Rheological properties of base slurry before and after adding different tackifiers

    配方塑性黏度/
    (mPa·s)
    动切力/
    Pa
    动塑比ϕ6ϕ3LSYP
    基浆122.50.22210
    基浆+0.3%CQZN148.00.57765
    基浆+0.3%XCD178.00.47642
    基浆+0.3%PAC-HV197.50.39531
    基浆+0.3%CMC-HV196.00.31321
    下载: 导出CSV

    表  4  加入不同量复合增黏剂CQZN后基浆的流变性

    Table  4.   Rheological properties of base slurry after adding different dosages of CQZN compound tackifier

    CQZN加量,%塑性黏度/(mPa·s)动切力/Pa动塑比ϕ6ϕ3LSYP
    0 122.50.22210
    0.1124.00.33432
    0.2136.00.46531
    0.3148.00.57765
    0.41710.0 0.59975
    下载: 导出CSV

    表  5  加入不同润滑剂前后基浆的润滑系数降低率和表观黏度

    Table  5.   Lubricating coefficient reduction rate and apparent viscosity of base slurry before and after adding different lubricants

    配方润滑系数降低率,%表观黏度/(mPa·s)
    基浆40.5
    基浆+2%润滑剂A16.1340.0
    基浆+4%润滑剂A61.2942.5
    基浆+2%润滑剂B–8.0648.0
    基浆+4%润滑剂B11.2948.5
    基浆+2%润滑剂C45.1638.5
    基浆+4%润滑剂C55.6541.0
    基浆+2%润滑剂D23.3943.5
    基浆+4%润滑剂D47.5845.5
    下载: 导出CSV

    表  6  加入复配润滑剂后基浆的润滑系数降低率和表观黏度

    Table  6.   Lubricating coefficient reduction rate and apparent viscosity of base slurry before and after adding compound lubricants

    配方润滑系数
    降低率,%
    表观黏度/
    (mPa·s)
    基浆40.50
    基浆+2%润滑剂A+4%润滑剂C80.3948.03
    基浆+3%润滑剂A+3%润滑剂C82.7849.32
    基浆+4%润滑剂A+2%润滑剂C87.6250.78
    下载: 导出CSV

    表  7  不同水基钻井液的流变性

    Table  7.   Rheological properties of different water-based drilling fluids

    钻井液表观黏度/
    (mPa·s)
    塑性黏度/
    (mPa·s)
    动切力/Pa动塑比ϕ6ϕ3LSYP
    优选3422120.55654
    现用3426 80.31321
    下载: 导出CSV

    表  8  不同水基钻井液抑制性评价结果

    Table  8.   Appraisal results of inhibition of different water-based drilling fluids

    钻井液岩屑回收率,%表观黏度上升率,
    %
    滤液水活度
    一次二次
    优选98.6476.82 6.530.5~0.7
    现用89.8153.1714.710.8~0.9
    下载: 导出CSV

    表  9  优选和现用水基钻井液抗污染性能评价结果

    Table  9.   Appraisal results of anti-pollution performance of different water-based drilling fluids

    钻井液条件表观黏度/(mPa·s)塑性黏度/(mPa·s)API滤失量/mL
    优选污染前34222.5
    污染后37253.0
    现用污染前34263.5
    污染后40315.0
    下载: 导出CSV

    表  10  纤维可固化复合堵漏液堵漏效果评价结果

    Table  10.   Appraisal results of plugging effect of fiber curable composite plugging fluid

    堵漏液密度/(kg·L–1)承压能力/MPa
    1 mm裂缝3 mm裂缝5 mm裂缝
    1.255.44.11.2
    1.306.04.51.5
    1.356.25.21.8
    下载: 导出CSV

    表  11  不同井深、水平段长度下的环空压耗和当量循环密度

    Table  11.   Annular pressure loss and equivalent circulation density at different well depths and horizontal section lengths

    井深/m水平段长度/m环空循环压耗/MPa 当量循环密度/
    (kg·L−1
    条件1条件2条件1条件2
    2 178.0002.4051.2931.471.32
    2 678.00 500.002.6411.4211.491.32
    3 178.001 000.002.8771.5481.501.33
    3 678.001 500.003.1131.6761.511.34
    4 179.002 000.003.4391.8031.531.34
    4 678.002 500.003.5851.9311.541.35
    5 178.003 000.003.8212.0581.551.36
    5 678.003 500.004.0572.1861.561.36
    6 178.004 000.004.2942.3141.581.37
     注:条件1是钻井液的密度为1.35 kg/L,塑性黏度为30 mPa·s,排量为33 L/s;条件2是钻井液的密度为1.25 kg/L,塑性黏度为22 mPa·s,排量为25 L/s。
    下载: 导出CSV

    表  12  水平段不同井段的钻井液性能

    Table  12.   Drilling fluid properties in different horizontal hole sections

    井深/m漏斗黏度/s密度/(kg·L–1API滤失量/mL动切力/Pa动塑比ϕ6ϕ3LSYP水活度
    2 178.00~3 678.0052~551.25~1.3037~80.50~0.605430.65
    3 678.00~4 900.0055~601.30~1.3339~100.50~0.607650.59
    4 900.00~5 642.0047~521.23~1.2445~60.40~0.454320.67
    5 642.00~6 266.0055~621.23~1.24210~120.50~0.609870.62
    下载: 导出CSV
  • [1] 王万庆. 陇东气田水平井钻井技术[J]. 石油钻探技术, 2017, 45(2): 15–19.

    WANG Wanqing. Horizontal drilling techniques in Longdong Gas Field[J]. Petroleum Drilling Techniques, 2017, 45(2): 15–19.
    [2] 柳伟荣,倪华峰,王学枫,等. 长庆油田陇东地区页岩油超长水平段水平井钻井技术[J]. 石油钻探技术, 2020, 48(1): 9–14.

    LIU Weirong, NI Huafeng, WANG Xuefeng, et al. Shale oil horizontal drilling technology with super-long horizontal laterals in the Longdong Region of the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(1): 9–14.
    [3] 于洋飞,杨光,陈涛,等. 新疆玛湖区块2 000 m 长水平段水平井钻井技术[J]. 断块油气田, 2017, 24(5): 727–730.

    YU Yangfei,YANG Guang,CHEN Tao,et al. Drilling technology of 2 km-long horizontal section in Mahu Block,Xinjiang Oilfield[J]. Fault-Block Oil & Gas Field, 2017, 24(5): 727–730.
    [4] 王建华,张家旗,谢盛,等. 页岩气油基钻井液体系性能评估及对策[J]. 钻井液与完井液, 2019, 36(5): 555–559.

    WANG Jianhua, ZHANG Jiaqi, XIE Sheng, et al. Evaluation and improvement of the performance of oil base drilling fluids for shale gas drilling[J]. Drilling Fluid & Completion Fluid, 2019, 36(5): 555–559.
    [5] 林永学,王显光,李荣府. 页岩气水平井低油水比油基钻井液研制及应用[J]. 石油钻探技术, 2016, 44(2): 28–33. doi:  10.11911/syztjs.201602005

    LIN Yongxue, WANG Xianguang, LI Rongfu. Development of oil-based drilling fluid with low oil-water ratio and its application to drilling horizontal shale gas wells[J]. Petroleum Drilling Techniques, 2016, 44(2): 28–33. doi:  10.11911/syztjs.201602005
    [6] 陈庚绪,刘奥,王茜,等. 适用于页岩气井的强抑制防塌高性能水基钻井液体系[J]. 断块油气田, 2018, 25(4): 529–532.

    CHEN Gengxu,LIU Ao,WANG Qian,et al. High inhibition and anti-sloughing water-based drilling fluid system for shale gas horizontal wells[J]. Fault-Block Oil & Gas Field, 2018, 25(4): 529–532.
    [7] 侯杰,刘永贵,李海. 高性能水基钻井液在大庆油田致密油藏水平井中的应用[J]. 石油钻探技术, 2015, 43(4): 59–65.

    HOU Jie, LIU Yonggui, LI Hai. Application of high-performance water-based drilling fluid for horizontal wells in tight reservoirs of Daqing Oilfield[J]. Petroleum Drilling Techniques, 2015, 43(4): 59–65.
    [8] 林永学,甄剑武. 威远区块深层页岩气水平井水基钻井液技术[J]. 石油钻探技术, 2019, 47(2): 21–27.

    LIN Yongxue, ZHEN Jianwu. Water based drilling fluid technology for deep shale gas horizontal wells in Block Weiyuan[J]. Petroleum Drilling Techniques, 2019, 47(2): 21–27.
    [9] 汪露,王伟志,杨中强. 塔河油田钻井液固相控制技术[J]. 钻采工艺, 2015, 38(6): 102–104. doi:  10.3969/J.ISSN.1006-768X.2015.06.32

    WANG Lu, WANG Weizhi, YANG Zhongqiang. Solid phase control technology of drilling fluid in Tahe Oilfield[J]. Drilling & Production Technology, 2015, 38(6): 102–104. doi:  10.3969/J.ISSN.1006-768X.2015.06.32
    [10] 刘永贵. 大庆致密油藏水平井高性能水基钻井液优化与应用[J]. 石油钻探技术, 2018, 46(5): 35–39.

    LIU Yonggui. Optimization and application of high performance Water-Based drilling fluid for horizontal wells in Daqing tight oil reservoir[J]. Petroleum Drilling Techniques, 2018, 46(5): 35–39.
    [11] 王长宁,崔贵涛,李宝军,等. 厄瓜多尔TARAPOA区块水平井钻井液关键技术[J]. 钻采工艺, 2017, 40(6): 87–89. doi:  10.3969/J.ISSN.1006-768X.2017.06.26

    WANG Changning, CUI Guitao, LI Baojun, et al. Key technology of drilling fluid for horizontal well in TARAPOA Block, Ecuador[J]. Drilling & Production Technology, 2017, 40(6): 87–89. doi:  10.3969/J.ISSN.1006-768X.2017.06.26
    [12] 肖金裕,杨兰平,李茂森,等. 有机盐聚合醇钻井液在页岩气井中的应用[J]. 钻井液与完井液, 2011, 28(6): 21–23. doi:  10.3969/j.issn.1001-5620.2011.06.007

    XIAO Jinyu, YANG Lanping, LI Maosen, et al. Application of organic salt polyol drilling fluid in shale gas wells[J]. Drilling Fluid & Completion Fluid, 2011, 28(6): 21–23. doi:  10.3969/j.issn.1001-5620.2011.06.007
    [13] 汪露,王鹏,王伟志,等. 对塔河油田井眼净化和井壁稳定的几点认识[J]. 钻采工艺, 2018, 41(5): 116–119. doi:  10.3969/J.ISSN.1006-768X.2018.05.35

    WANG Lu, WANG Peng, WANG Weizhi, et al. Some knowledge on wellbore purification and wellbore stability in Tahe Oilfield[J]. Drilling & Production Technology, 2018, 41(5): 116–119. doi:  10.3969/J.ISSN.1006-768X.2018.05.35
    [14] 李明,汪志明,郝炳英,等. 钻柱旋转对大位移井井眼净化影响规律的研究[J]. 石油机械, 2009, 37(12): 34–37.

    LI Ming, WANG Zhiming, HAO Bingying, et al. Study on the effect of drillstring rotation on wellbore purification in extended reach wells[J]. China Petroleum Machinery, 2009, 37(12): 34–37.
    [15] 汪志明,郭晓乐,张松杰,等. 南海流花超大位移井井眼净化技术[J]. 石油钻采工艺, 2006, 28(1): 4–8. doi:  10.3969/j.issn.1000-7393.2006.01.002

    WANG Zhiming, GUO Xiaole, ZHANG Songjie, et al. Borehole cleaning technology for mega-extended-reach wells at Liuhua Field in South China Sea[J]. Oil Drilling & Production Technology, 2006, 28(1): 4–8. doi:  10.3969/j.issn.1000-7393.2006.01.002
    [16] 罗显尧.孤岛地区水平井摩阻分析与减摩技术研究[D].北京: 中国石油大学(北京), 2010: 34–36.

    LUO Xianyao. Friction analysis and friction reduction technology of horizontal wells in Gudao area[D]. Beijing: China University of Petroleum(Beijing), 2010: 34–36.
    [17] 魏昱,白龙,王骁男. 川深1井钻井液关键技术[J]. 钻井液与完井液, 2019, 36(2): 194–201. doi:  10.3969/j.issn.1001-5620.2019.02.011

    WEI Yu, BAI Long, WANG Xiaonan. Key technologies of drilling fluid in Chuanshen 1 Well[J]. Drilling Fluid & Completion Fluid, 2019, 36(2): 194–201. doi:  10.3969/j.issn.1001-5620.2019.02.011
    [18] 刘清友,敬俊,祝效华. 长水平段水平井钻进摩阻控制[J]. 石油钻采工艺, 2016, 38(1): 18–22.

    LIU Qingyou, JING Jun, ZHU Xiaohua. Control of friction resistance in drilling of horizontal well with long horizontal section[J]. Oil Drilling & Production Technology, 2016, 38(1): 18–22.
    [19] 路宗羽,赵飞,雷鸣,等. 新疆玛湖油田砂砾岩致密油水平井钻井关键技术[J]. 石油钻探技术, 2019, 47(2): 9–14. doi:  10.11911/syztjs.2019029

    LU Zongyu, ZHAO Fei, LEI Ming, et al. Key technologies for drilling horizontal wells in glutenite tight oil reservoirs in the Mahu oilfield of Xinjiang[J]. Petroleum Drilling Techniques, 2019, 47(2): 9–14. doi:  10.11911/syztjs.2019029
    [20] 孔勇,杨小华,徐江,等. 抗高温强封堵防塌钻井液体系研究与应用[J]. 钻井液与完井液, 2016, 33(6): 17–22. doi:  10.3969/j.issn.1001-5620.2016.06.003

    KONG Yong, YANG Xiaohua, XU Jiang, et al. Study and application of a high temperature drilling fluid with strong plugging capacity[J]. Drilling Fluid & Completion Fluid, 2016, 33(6): 17–22. doi:  10.3969/j.issn.1001-5620.2016.06.003
    [21] 林四元,张杰,韩成,等. 东方气田浅部储层大位移水平井钻井关键技术[J]. 石油钻探技术, 2019, 47(5): 17–21.

    LIN Siyuan, ZHANG Jie, HAN Cheng, et al. Key technology for horizontal well of extended reach drilling in the shallow reservoirs of the Dongfang Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(5): 17–21.
    [22] 王建龙,齐昌利,柳鹤,等. 沧东凹陷致密油气藏水平井钻井关键技术[J]. 石油钻探技术, 2019, 47(5): 11–16.

    WANG Jianlong, QI Changli, LIU He, et al. Key technologies for drilling horizontal wells in tight oil and gas reservoirs in the Cangdong Sag[J]. Petroleum Drilling Techniques, 2019, 47(5): 11–16.
  • [1] 史配铭, 倪华峰, 石崇东, 王学枫, 王万庆, 屈艳平.  苏里格致密气藏超长水平段水平井钻井完井关键技术, 石油钻探技术. doi: 10.11911/syztjs.2021056
    [2] 王涛, 刘锋报, 罗威, 晏智航, 陆海瑛, 郭斌.  塔里木油田防漏堵漏技术进展与发展建议, 石油钻探技术. doi: 10.11911/syztjs.2020080
    [3] 田逢军, 王运功, 唐斌, 李治君, 刘克强.  长庆油田陇东地区页岩油大偏移距三维水平井钻井技术, 石油钻探技术. doi: 10.11911/syztjs.2021079
    [4] 殷召海, 李国强, 王海, 丁永亮, 王雲, 刘长柱.  克拉苏构造带博孜1区块复杂超深井钻井完井关键技术, 石油钻探技术. doi: 10.11911/syztjs.2020130
    [5] 杨静, 涂福洪, 霍如军, 陶瑞东, 尚子博, 郭亮.  苏里格南区块小井眼钻井关键技术, 石油钻探技术. doi: 10.11911/syztjs.2020082
    [6] 倪华峰, 杨光, 张延兵.  长庆油田页岩油大井丛水平井钻井提速技术, 石油钻探技术. doi: 10.11911/syztjs.2021076
    [7] 王忠良, 周扬, 文晓峰, 龙斌, 丁凡, 陈邵维.  长庆油田小井眼超长水平段水平井钻井技术, 石油钻探技术. doi: 10.11911/syztjs.2021060
    [8] 田增艳, 杨贺卫, 李晓涵, 尹丽, 王信, 黄臣.  大港油田页岩油水平井钻井液技术, 石油钻探技术. doi: 10.11911/syztjs.2021012
    [9] 张雄, 余进, 毛俊, 刘祖磊.  准噶尔盆地玛东油田水平井高性能油基钻井液技术, 石油钻探技术. doi: 10.11911/syztjs.2020106
    [10] 柳伟荣, 倪华峰, 王学枫, 石仲元, 谭学斌, 王清臣.  长庆油田陇东地区页岩油超长水平段水平井钻井技术, 石油钻探技术. doi: 10.11911/syztjs.2020029
    [11] 林永学, 甄剑武.  威远区块深层页岩气水平井水基钻井液技术, 石油钻探技术. doi: 10.11911/syztjs.2019022
    [12] 林永学, 王伟吉, 金军斌.  顺北油气田鹰1井超深井段钻井液关键技术, 石油钻探技术. doi: 10.11911/syztjs.2019068
    [13] 刘永贵.  大庆致密油藏水平井高性能水基钻井液优化与应用, 石油钻探技术. doi: 10.11911/syztjs.2018090
    [14] 石秉忠, 解超, 李胜, 刘金华, 陈晓飞.  杭锦旗区块锦58井区钻井液技术实践与认识, 石油钻探技术. doi: 10.11911/syztjs.201706007
    [15] 吴爽.  辽河油田无固相强抑制水基钻井液技术, 石油钻探技术. doi: 10.11911/syztjs.201706008
    [16] 贾俊, 赵向阳, 刘伟.  长庆油田水基环保成膜钻井液研究与现场试验, 石油钻探技术. doi: 10.11911/syztjs.201705007
    [17] 魏殿举, 金军斌, 何青水.  YD油田高渗灰岩储层水平井钻井液技术, 石油钻探技术. doi: 10.11911/syztjs.201503005
    [18] 侯杰, 刘永贵, 李海.  高性能水基钻井液在大庆油田致密油藏水平井中的应用, 石油钻探技术. doi: 10.11911/syztjs.201504011
    [19] 慕立俊, 朱洪征, 吕亿明, 王百, 李大建, 牛彩云.  低产液量水平井找堵水管柱的设计与应用, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2014.01.018
    [20] 杨力.  彭水区块页岩气水平井防漏堵漏技术探讨, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2013.05.003
  • 加载中
图(5) / 表ll (12)
计量
  • 文章访问数:  1717
  • HTML全文浏览量:  461
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-04
  • 修回日期:  2020-04-17
  • 网络出版日期:  2020-04-26
  • 刊出日期:  2020-08-04

目录

    /

    返回文章
    返回