页岩油高效开发钻井完井关键技术及发展方向

王敏生 光新军 耿黎东

王敏生, 光新军, 耿黎东. 页岩油高效开发钻井完井关键技术及发展方向[J]. 石油钻探技术, 2019, 47(5): 1-10. doi: 10.11911/syztjs.2019076
引用本文: 王敏生, 光新军, 耿黎东. 页岩油高效开发钻井完井关键技术及发展方向[J]. 石油钻探技术, 2019, 47(5): 1-10. doi: 10.11911/syztjs.2019076
WANG Minsheng, GUANG Xinjun, GENG Lidong. Key Drilling/Completion Technologies and Development Trends in the Efficient Development of Shale Oil[J]. Petroleum Drilling Techniques, 2019, 47(5): 1-10. doi: 10.11911/syztjs.2019076
Citation: WANG Minsheng, GUANG Xinjun, GENG Lidong. Key Drilling/Completion Technologies and Development Trends in the Efficient Development of Shale Oil[J]. Petroleum Drilling Techniques, 2019, 47(5): 1-10. doi: 10.11911/syztjs.2019076

页岩油高效开发钻井完井关键技术及发展方向

doi: 10.11911/syztjs.2019076
基金项目: 

中国石化科技攻关项目“国内外石油工程技术装备发展趋势与中石化发展战略研究”(编号:P19029-5)资助

详细信息
    作者简介:

    王敏生(1973—),男,河南信阳人,1995年毕业于江汉石油学院钻井工程专业,2009 年获中国石油大学(华东) 油气井工程专业博士学位,教授级高级工程师,主要从事钻井工艺及石油工程战略规划方面的研究。E-mail:wangms.sripe@sinopec.com

  • 中图分类号: TE21

Key Drilling/Completion Technologies and Development Trends in the Efficient Development of Shale Oil

  • 摘要: 近年来美国的页岩油产量急剧增长,页岩油钻井完井技术也呈现出一些新的特点和动向。为了给我国页岩油高效勘探开发提供参考和借鉴,分析了国内外页岩油的勘探开发现状,介绍了实现页岩油经济高效开发所采用的关键钻井完井技术,包括储层甜点评价与识别技术、长水平段水平井技术、高密度分段压裂技术、物探–地质–工程一体化技术和大数据分析与工程优化技术等,并结合页岩油经济高效开发面临的挑战及我国页岩油的勘探开发现状,提出了适应我国页岩油储层高效开发的钻井完井关键技术及发展方向,以指导我国页岩油的经济高效开发,保障国家能源安全。
  • 图  1  2010—2016年间钻井完井参数、单井初始产量和单位体积页岩油成本变化趋势

    Figure  1.  Variation trends of drilling and completion parameters, initial production per well and cost per unit volume of shale oil from 2010 to 2016

    图  2  地质甜点和工程甜点结合优化作业参数示意

    Figure  2.  Schematic diagram of operating parameters optimization by combining geological sweet spots with engineering sweet spots

    图  3  页岩油丛式水平井立体开发变化趋势

    Figure  3.  Variation trends of the stereoscopic development of clustered shale oil horizontal wells

    图  4  暂堵剂封堵主裂缝入口实现转向

    Figure  4.  Diversion achieved by blocking the main fracture entrance with temporary plugging agent

    图  5  物探–地质–工程一体化工作流程

    Figure  5.  Workflow of geophysical-geological-engineering integration

    图  6  2012—2016年Bakken页岩油产区油井产量递减曲线

    Figure  6.  Production decline curves of oil wells in Bakken shale oil area from 2012 to 2016

    表  1  ConocoPhillips公司2013—2017年在Eagle Ford页岩油产区压裂设计的变化情况

    Table  1.   Changes in Eagle Ford shale fracturing design used by ConocoPhillips from 2013 to 2017

    年份压裂级数段间距/m射孔簇/簇簇间距/m加砂密度/(t·m–1)压裂砂类型压裂液体系
    201215100 520.0 1.12石英砂或覆膜砂凝胶
    2015256087.53.14石英砂滑溜水+凝胶
    2017305011 4.54.63石英砂滑溜水+凝胶
    下载: 导出CSV

    表  2  Bakken页岩油22口重复压裂井的统计数据

    Table  2.   Statistics on 22 re-fracturing Bakken shale oil wells

    序号压裂
    时机1)/月
    压裂后初始产
    量与首次压裂
    初始产量之比
    压裂后产量递
    减率与首次压
    裂递减率之比
    预计最终累计采出量比
    1380.920.612.85
    2322.131.111.61
    3430.540.821.45
    4320.830.701.87
    5310.330.731.27
    6240.540.911.17
    7300.520.981.16
    8210.570.901.16
    9390.380.671.37
    10260.800.801.72
    11391.121.031.33
    12370.540.641.61
    13370.600.791.65
    14751.120.971.70
    15480.210.771.09
    16510.350.591.38
    17600.310.571.38
    18460.830.612.96
    19593.161.551.86
    20642.091.211.45
    21361.010.792.73
    22601.270.812.51
     注:1)压裂时机指油井生产到某月时对其进行压裂。
    下载: 导出CSV

    表  3  加拿大阿尔伯塔Montney页岩油区块压裂参数

    Table  3.   Fracturing parameters of the Montney shale oil block in Alberta, Canada

    井组
    编号
    井数垂深/
    m
    测深/
    m
    压裂液及用水量压裂
    级数
    支撑剂
    含量,%
    压裂液用水量/m3
    118 1 8353 710油+10%N2 02324
    251 8283 592水+10%N27852220
    312 0433 756油+10%N2 02120
    461 9163 7296421725
    541 9173 790水+20%N22742032
    622 0773 6304561719
    712 0793 400水+20%N21981634
    811 9663 672油+10%N2 01830
    942 1823 789油+10%N2 01930
    下载: 导出CSV

    表  4  Bakken页岩油产区各区块的建井成本

    Table  4.   Well construction costs for each block in the Bakken shale oil area

    区块建井成本/万美元
    钻井完井地面设施总计
    Elm Coulee24044060740
    Parshall24048060780
    Periphery24049060790
    New Fairway26048060800
    下载: 导出CSV
  • [1] 金之钧, 白振瑞, 高波, 等. 中国迎来页岩油气革命了吗?[J]. 石油与天然气地质, 2019, 40(3): 451–458. doi:  10.11743/ogg20190301

    JIN Zhijun, BAI Zhenrui, GAO Bo, et al. Has China ushered in the shale oil and gas revolution?[J]. Oil & Gas Geology, 2019, 40(3): 451–458. doi:  10.11743/ogg20190301
    [2] 张金川, 林腊梅, 李玉喜, 等. 页岩油分类与评价[J]. 地学前缘, 2012, 19(5): 322–331.

    ZHANG Jinchuan, LIN Lamei, LI Yuxi, et al. Classification and evaluation of shale oil[J]. Earth Science Frontiers, 2012, 19(5): 322–331.
    [3] United States Energy Information Administration. Technically recoverable shale oil and shale gas resources: an assessment of 137 shale formations in 41 countries outside the United States[R]. Wa-shington: U. S. Department of Energy, 2013.
    [4] 郭晓霞, 杨金华, 钟新荣. 北美致密油钻井技术现状及对我国的启示[J]. 石油钻采工艺, 2014, 36(4): 1–5.

    GUO Xiaoxia, YANG Jinhua, ZHONG Xinrong. The status of tight oil drilling technique in North America and its enlightenment to China[J]. Oil Drilling & Production Technology, 2014, 36(4): 1–5.
    [5] 梁新平, 金之钧, SHPILMAN A,, et al. 俄罗斯页岩油地质特征及勘探开发进展[J]. 石油与天然气地质, 2019, 40(3): 478–490, 503. doi:  10.11743/ogg20190304

    LIANG Xinping, JIN Zhijun, SHPILMAN A, et al. Geological characteristics and latest progress in exploration and development of Russian shale oil[J]. Oil & Gas Geology, 2019, 40(3): 478–490, 503. doi:  10.11743/ogg20190304
    [6] SINGER B, SYED W, SAMA V S, et al. Shale innovation: brawn to brains to bytes[R/OL].[2017-06-23]. http://www.altiragroup.com/sites/default/files/resourcesShaleInnovation.pdf.
    [7] GLASER K S, MILLer C K, JOHNSON G M, et al. Seeking the sweet spot:reservoir and completion quality in organic shales[J]. Oilfield Review, 2013, 25(4): 16–29.
    [8] TINNIN B, MCCHESNEY M D, BELLO H. Multi-source data integration: Eagle Ford shale sweet spot mapping[R].SPE 178592, 2015.
    [9] KHALIL R, FENG G. Geomechanical sweet spot identification in unconventional resources development[R].SPE 182247, 2016.
    [10] CHEN B, KUMAR D, UERLING A, et al. Integrated petrophysical and geophysical analysis on identifying Eagle Ford sweet spots[R].URTeC 2154677, 2015.
    [11] ANAND V, ALI M R, AL-ADANI N, et al. New generation NMR tool for robust, continuous T1 and T2 measurements[R]. SPWLA-2015-CC, 2015.
    [12] PetroShale. High-quality, stacked oil pay in the sweet spot of the north Dakota Bakken[R/OL].[2019-06-23].http://www.petroshaleinc.com/wp-content/uploads/2019/01/PSH-January-Inv-Presentation-FINAL2.pdf.
    [13] ROBINSON K A, MAZEROV K. Land drillers usher in era of super-sprc rigs[J]. Drilling Contractor, 2018, 74(5): 16–26.
    [14] MACPHERSON J, KNIGHT S, WARDT J D. Automation of directional drilling system with remote supervisory control allows mile-a-day wells to be achieved in Appalachian Basin[J]. Drilling contractor, 2018, 74(5): 32–37.
    [15] 潘军, 王敏生, 光新军. PDC钻头新进展及发展思考[J]. 石油机械, 2016, 44(11): 5–13.

    PAN Jun, WANG Minsheng, GUANG Xinjun. New progress and future development of PDC bit[J]. China Petroleum Machinery, 2016, 44(11): 5–13.
    [16] 王敏生, 光新军, 皮光林, 等. 低油价下石油工程技术创新特点及发展方向[J]. 石油钻探技术, 2018, 46(6): 1–8.

    WANG Minsheng, GUANG Xinjun, PI Guanglin, et al. The characteristics of petroleum engineering technology design and innovation in a low oil price environment[J]. Petroleum Drilling Techniques, 2018, 46(6): 1–8.
    [17] PINK T, COIT A, SMITH J, et al. Testing the performance impact of automation applications on different drive systems in unconventional well development[R]. SPE 173159, 2015.
    [18] LEVEILLE G. Barclays shale oil technical teach in[R/OL].[2019-06-23]. http://static.conocophillips.com/files/reports/conocophillips-greg-leveille-barclays-shale-oil-te.pdf.
    [19] MILLER G, LINDSAY G, BAIHLY J, et al. Parent well refracturing: economic safety nets in an uneconomic market[R].SPE 180200, 2016.
    [20] GOMAA A M, NINO-PENALOZA A, MCCARTNEY E, et al. Engineering solid particulate diverter to control fracture complexity: experimental study[R]. SPE 179144, 2016.
    [21] ORUGANTI Y, MITTAL R, MCBURNEY C J, et al. Re-fracturing in Eagle Ford and Bakken to increase reserves and generate incremental NPV: field study[R].SPE173340, 2015.
    [22] GREEN J, DEWENDT A, TERRACINA J, et al. First proppant designed to decrease water production[R].SPE 191394, 2018.
    [23] PANKAJ P, PHATAK A, VERMA S. Application of natural gas for foamed fracturing fluid in unconventional reservoirs[R].SPE 191863, 2018.
    [24] ZBOROWSKI M. How ConocoPhillips solved its big data problem[J].Journal of Petroleum Technology, 2018, 70(7): 21-26.
    [25] Petroleum Technology Alliance Canada. Tight oil and shale gas innovation roadmap[R/OL]. (2017-05-08)[2019-06-23]. https://www.ptac.org/wp-content/uploads/2017/05/TOGIN-Roadmap-Report-05May2017.pdf.
    [26] United States Energy Information Administration. Trends in U.S. oil and natural gas upstream costs[R/OL].[2019-06-23].http://www.eia.gov/analysis/studies/drilling/pdf/upstream.pdf.
    [27] BERMAN A. Putting the Permian Basin in perspective: tight oil & the long-term debt cycle[R]. Midland, Texas: West Texas Geological Society 2017 Fall Symposium, 2017.
    [28] PANKAJ P, MUKISA H, SOLOVYEVA I, et al. Boosting oil recovery in naturally fractured shale using CO2 huff-n-puff[R]. SPE 191823, 2018.
    [29] PANKAJ P, PHATAK A, VERMA S. Evaluating natural gas-based foamed fracturing fluid application in unconventional reservoirs[R].SPE 192042, 2018.
    [30] 付茜. 中国页岩油勘探开发现状、挑战及前景[J]. 石油钻采工艺, 2015, 37(4): 58–62.

    FU Qian. The status, challenge and prospect of shale oil exploration and development in China[J]. Oil Drilling & Production Technology, 2015, 37(4): 58–62.
  • [1] 陈志明, 赵鹏飞, 曹耐, 廖新维, 王佳楠, 刘辉.  页岩油藏压裂水平井压-闷-采参数优化研究, 石油钻探技术. doi: 10.11911/syztjs.2022005
    [2] 田福春, 刘学伟, 张胜传, 张高峰, 邵力飞, 陈紫薇.  大港油田陆相页岩油滑溜水连续加砂压裂技术, 石油钻探技术. doi: 10.11911/syztjs.2021021
    [3] 田增艳, 杨贺卫, 李晓涵, 尹丽, 王信, 黄臣.  大港油田页岩油水平井钻井液技术, 石油钻探技术. doi: 10.11911/syztjs.2021012
    [4] 赵波, 陈二丁.  胜利油田页岩油水平井樊页平1井钻井技术, 石油钻探技术. doi: 10.11911/syztjs.2021078
    [5] 韩来聚, 杨春旭.  济阳坳陷页岩油水平井钻井完井关键技术, 石油钻探技术. doi: 10.11911/syztjs.2021073
    [6] 倪华峰, 杨光, 张延兵.  长庆油田页岩油大井丛水平井钻井提速技术, 石油钻探技术. doi: 10.11911/syztjs.2021076
    [7] 陈海宇, 王新东, 林晶, 陈涛, 李辉, 范琳.  新疆吉木萨尔页岩油超长水平段水平井钻井关键技术, 石油钻探技术. doi: 10.11911/syztjs.2021036
    [8] 张冬明.  大庆页岩地层长水平段水平井油基钻井液技术, 石油钻探技术. doi: 10.11911/syztjs.2021087
    [9] 刘天恩, 张海军, 袁光杰, 李国韬, 阴启武, 陈斐.  沧东凹陷页岩油水平井优快钻井技术, 石油钻探技术. doi: 10.11911/syztjs.2020127
    [10] 李玉海, 李博, 柳长鹏, 郑瑞强, 李相勇, 纪博.  大庆油田页岩油水平井钻井提速技术, 石油钻探技术. doi: 10.11911/syztjs.2021085
    [11] 王栋, 赖学明, 唐庆, 周俊杰.  沧东凹陷页岩油水平井不压井作业技术, 石油钻探技术. doi: 10.11911/syztjs.2021077
    [12] 李杉杉, 孙虎, 张冕, 池晓明, 刘欢.  长庆油田陇东地区页岩油水平井细分切割压裂技术, 石油钻探技术. doi: 10.11911/syztjs.2021080
    [13] 王金刚, 孙虎, 任斌, 尹俊禄.  填砂分段压裂技术在页岩油套变水平井的应用, 石油钻探技术. doi: 10.11911/syztjs.2021084
    [14] 欧阳伟平, 张冕, 孙虎, 张云逸, 池晓明.  页岩油水平井压裂渗吸驱油数值模拟研究, 石油钻探技术. doi: 10.11911/syztjs.2021083
    [15] 陈超峰, 王波, 王佳, 许译文, 秦莹民, 李雪彬.  吉木萨尔页岩油下甜点二类区水平井压裂技术, 石油钻探技术. doi: 10.11911/syztjs.2021089
    [16] 闫林, 陈福利, 王志平, 阎逸群, 曹瑾健, 王坤琪.  我国页岩油有效开发面临的挑战及关键技术研究, 石油钻探技术. doi: 10.11911/syztjs.2020058
    [17] 杨灿, 王鹏, 饶开波, 蔺玉水, 李伟, 叶顺友.  大港油田页岩油水平井钻井关键技术, 石油钻探技术. doi: 10.11911/syztjs.2020036
    [18] 柳伟荣, 倪华峰, 王学枫, 石仲元, 谭学斌, 王清臣.  长庆油田陇东地区页岩油超长水平段水平井钻井技术, 石油钻探技术. doi: 10.11911/syztjs.2020029
    [19] 黄进, 吴雷泽, 游园, 黄晓凯, 聂彬, 张辉.  涪陵页岩气水平井工程甜点评价与应用, 石油钻探技术. doi: 10.11911/syztjs.201603003
    [20] 蒋廷学.  页岩油气水平井压裂裂缝复杂性指数研究及应用展望, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2013.02.002
  • 加载中
图(6) / 表ll (4)
计量
  • 文章访问数:  1642
  • HTML全文浏览量:  1619
  • PDF下载量:  226
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-28
  • 修回日期:  2019-06-26
  • 网络出版日期:  2019-07-19
  • 刊出日期:  2019-09-01

目录

    /

    返回文章
    返回