基于渗透率合成技术的砂岩油藏产能预测方法

王清辉 朱明 冯进 管耀 侯博恒

王清辉, 朱明, 冯进, 管耀, 侯博恒. 基于渗透率合成技术的砂岩油藏产能预测方法[J]. 石油钻探技术. doi: 10.11911/syztjs.2021122
引用本文: 王清辉, 朱明, 冯进, 管耀, 侯博恒. 基于渗透率合成技术的砂岩油藏产能预测方法[J]. 石油钻探技术. doi: 10.11911/syztjs.2021122
WANG Qinghui, ZHU Min, FENG Jin, GUAN Yao, HOU Boheng. Research on Productivity Prediction Method of Sandstone Reservoir Based on Logging Permeability Synthesis Technology[J]. Petroleum Drilling Techniques. doi: 10.11911/syztjs.2021122
Citation: WANG Qinghui, ZHU Min, FENG Jin, GUAN Yao, HOU Boheng. Research on Productivity Prediction Method of Sandstone Reservoir Based on Logging Permeability Synthesis Technology[J]. Petroleum Drilling Techniques. doi: 10.11911/syztjs.2021122

基于渗透率合成技术的砂岩油藏产能预测方法

doi: 10.11911/syztjs.2021122
基金项目: 国家科技重大专项“南海东部海域勘探新领域及关键技术”(编号:2016ZX05024-004)资助
详细信息
    作者简介:

    王清辉(1986—),男,湖北咸宁人,2010年毕业于长江大学地球探测与信息技术专业,2013年获中国石油大学(北京)地球探测与信息技术专业硕士学位,测井工程师,主要从事珠江口盆地(东部)地区测井储层评价研究。E-mail:wangqh24@cnooc.com.cn

  • 中图分类号: TE32+8

Research on Productivity Prediction Method of Sandstone Reservoir Based on Logging Permeability Synthesis Technology

  • 摘要: 利用常规测井资料准确计算钻杆地层测试(DST)渗透率,能够大幅提高海上非均质砂岩油藏产能预测精度。为此,综合考虑惠州凹陷宏观沉积成岩作用和微观孔隙结构对储层渗透率的影响,建立了不同储层类型的绝对渗透率测井解释模型。正演分析结果表明,射孔层段不同渗透率级差的储层对产能的贡献明显不同;对不同级别储层渗透率进行加权求和得到合成测井渗透率,并对权系数大小进行约束,突出优势储层对产能的贡献,建立了DST渗透率的回归拟合方程;采用差分进化算法进行迭代,得到DST渗透率计算方程的最优解。采用该方法对惠州凹陷72个油层产能进行预测,48个油层的产能大于100 m3/d,预测相对误差小于30%的油层占比90%;24个油层的产能为10~100 m3/d,相对误差小于50%的油层占比79%。研究表明,基于渗透率合成技术的砂岩油藏产能预测方法能够为海上油田测试作业决策提供指导,降低勘探作业成本。
  • 图  1  惠州凹陷米采油指数与DST渗透率和测井平均渗透率交会图

    Figure  1.  Cross plot of meter oil production index with DST test permeability and log average permeability of Huizhou Sag

    图  2  惠州凹陷射孔方式与表皮系数分布直方图

    Figure  2.  Histogram of perforation method and skin coefficient distribution in Huizhou Sag

    图  3  不同渗透率级差储层产能正演模拟成果

    Figure  3.  Results of forward modeling of reservoir productivity with different permeability levels

    图  4  惠州凹陷测井平均渗透率和合成测井渗透率与DST渗透率交会图

    Figure  4.  Cross plot of average log permeability and log composite permeability in Huizhou Sag with DST test permeability

    图  5  惠州凹陷油藏产能预测结果误差分析

    Figure  5.  Error analysis diagram of reservoir productivity prediction results in Huizhou Sag

    图  6  惠州凹陷A井珠海组M层产能预测结果

    Figure  6.  Productivity prediction result of M10 layer of Zhuhai Formation in Well HZ21-B of Huizhou Sag

    表  1  惠州凹陷不同油藏类型的供油半径计算模型

    Table  1.   Oil supply radius calculation models of different reservoir types in Huizhou Sag

    油藏类型供油半径计算模型相关系数
    油藏内部发育断层$ {r_{\text{e}}}{\text{ = 29}}{\text{.883}} \left(\dfrac{{{K_{{\text{DST}}}}}}{\mu }\right){^{0.499\;2}} $0.975 9
    边水驱动油藏${r_{\text{e}}}{\text{ = 41}}{\text{.321}} \left(\dfrac{{{K_{{\text{DST}}}}}}{\mu }\right){^{0.443\;8}} $0.927 7
    底水驱动油藏$ {r_{\text{e}}}{\text{ = 4}}{{.629\;9}}\left(\dfrac{{{K_{{\text{DST}}}}}}{\mu }\right){^{0.706\;3}} $0.853 9
    下载: 导出CSV

    表  2  惠州凹陷不同储层类型的孔、渗模型和Fisher识别结果

    Table  2.   Porosity and permeability models and Fisher identification results of different reservoir types in Huizhou Sag

    储层类型岩性沉积微相渗透率计算模型相关系数Fisher识别结果
    符合不符合
    PF1中、粗砂岩,含砾砂岩辫状分流河道、滩砂水道和沿岸坝$K = 2.473\;6{{\rm{e}}^{0.309\;6\phi }}$0.82605
    PF2中-细砂岩分流河道、河口坝和风暴席状砂$K = 0.411{{\rm{e}}^{0.335\;1\phi }}$0.91210 11
    PF3钙质中-细砂岩潮汐水道、远砂坝$K = 0.000\;06{{\rm{e}}^{0.636\;2\phi }}$0.83280
    PF4细砂岩、粉砂岩远砂坝$K = {10^{ - 9.045}}{\phi ^{8.402}}$0.84398
    PF5泥质粉砂岩分流河道间湾、远砂坝$K = 0.004\;7{{\rm{e}}^{0.403\;7\phi }}$0.79164
    下载: 导出CSV

    表  3  惠州凹陷储层分级标准

    Table  3.   Reservoir classification standard table in Huizhou Sag

    储层
    级别
    孔隙度,%渗透率/
    mD
    米采油指数/
    (m3·d−1·MPa−1·m−1
    产量分类
    Ⅰ级≥30.0≥2 00010.50~163.90高产
    Ⅱ级25.0~30.0500~2 0006.80~62.50高产
    Ⅲ级20.0~25.0200~5004.10~21.60中-高产
    Ⅳ级17.5~20.050~2000.92~11.25中-低产
    Ⅴ级15.0~17.520~500.87~3.65中-低产
    Ⅵ级12.0~15.05~200.47~1.78低产-少产
    Ⅶ级<12.0<50.02~0.54少产-无产
    下载: 导出CSV
  • [1] 刘彦成,罗宪波,康凯,等. 陆相多层砂岩油藏渗透率表征与定向井初期产能预测: 以蓬莱19-3油田为例[J]. 石油勘探与开发,2017,44(1):97–103. doi:  10.1016/S1876-3804(17)30012-5

    LIU Yancheng, LUO Xianbo, KANG Kai, et al. Permeability characterization and directional wells initial productivity prediction in the continental multilayer sandstone reservoirs: a case from Penglai 19-3 Oil Field, Bohai Bay Basin[J]. Petroleum Exploration and Development, 2017, 44(1): 97–103. doi:  10.1016/S1876-3804(17)30012-5
    [2] 田亚鹏,鞠斌山,胡杰. 考虑蒸汽超覆的稠油蒸汽吞吐产能预测模型[J]. 石油钻探技术,2018,46(1):100–116.

    TIAN Yapeng, JU Binshan, HU Jie. A productivity prediction model for heavy oil steam huff and puff considering steam override[J]. Petroleum Drilling Techniques, 2018, 46(1): 100–116.
    [3] 吴春新,刘学,刘英宪,等. 黄河口凹陷比采油指数预测方法及应用[J]. 断块油气田,2018,25(2):218–221.

    WU Chunxin, LIU Xue, LIU Yingxian, et al. Method of specific productivity index prediction of Huanghekou Sag and its application[J]. Fault-Block Oil & Gas Field, 2018, 25(2): 218–221.
    [4] 时新磊,崔云江,许万坤,等. 基于随钻测压流度的地层渗透率评价方法及产能预测[J]. 石油勘探与开发,2020,47(1):140–147.

    SHI Xinlei, CUI Yunjiang, XU Wankun, et al. Formation permeability evaluation and productivity prediction based on mobility from pressure measurement while drilling[J]. Petroleum Exploration and Development, 2020, 47(1): 140–147.
    [5] 谭忠健,胡云,张国强,等. 渤中19-6构造复杂储层流体评价及产能预测[J]. 石油钻采工艺,2018,40(6):764–774.

    TAN Zhongjian, HU Yun, ZHANG Guoqiang, et al. Fluid evaluation and productivity prediction on complex reservoirs in Bozhong 19-6 structure[J]. Oil Drilling & Production Technology, 2018, 40(6): 764–774.
    [6] 蒋兴才. 辽河葵东地区低电阻率油层产能影响因素分析及预测[J]. 特种油气藏,2019,26(4):70–75. doi:  10.3969/j.issn.1006-6535.2019.04.012

    JIANG Xingcai. Low-resistivity reservoir productivity analysis and forecast in Kuidong of Liaohe[J]. Special Oil & Gas Reservoirs, 2019, 26(4): 70–75. doi:  10.3969/j.issn.1006-6535.2019.04.012
    [7] 张龙海,刘国强,周灿灿,等. 基于阵列感应测井资料的油气层产能预测[J]. 石油勘探与开发,2005,32(3):84–87. doi:  10.3321/j.issn:1000-0747.2005.03.021

    ZHANG Longhai, LIU Guoqiang, ZHOU Cancan, et al. Reservoir productivity prediction by array induction logging data[J]. Petroleum Exploration and Development, 2005, 32(3): 84–87. doi:  10.3321/j.issn:1000-0747.2005.03.021
    [8] 张利军,田冀,朱国金. 海上断块油田定向井初期产能评价方法分析[J]. 石油钻探技术,2015,43(1):111–116.

    ZHANG Lijun, TIAN Ji, ZHU Guojin. Evaluation methods for initial productivity of directional wells in offshore fault block oilfields[J]. Petroleum Drilling Techniques, 2015, 43(1): 111–116.
    [9] 谭成仟,马娜蕊,苏超. 储层油气产能的预测模型和方法[J]. 地球科学与环境学报,2004,26(2):42–46. doi:  10.3969/j.issn.1672-6561.2004.02.010

    TAN Chenqian, MA Narui, SU Chao. Model and method for oil and gas productivity prediction of reservoir[J]. Journal of Earth Sciences and Environment, 2004, 26(2): 42–46. doi:  10.3969/j.issn.1672-6561.2004.02.010
    [10] 马文礼,李治平,孙玉平,等. 基于机器学习的页岩气产能非确定性预测方法研究[J]. 特种油气藏,2019,26(2):101–105. doi:  10.3969/j.issn.1006-6535.2019.02.018

    MA Wenli, LI Zhiping, SUN Yuping et al. Non-deterministic shale gas productivity forecast based on machine learning[J]. Special Oil & Gas Reservoirs, 2019, 26(2): 101–105. doi:  10.3969/j.issn.1006-6535.2019.02.018
    [11] 安小平,李相方,程时清,等. 不同方法获取渗透率的对比分析[J]. 油气井测试,2005,14(5):14–17. doi:  10.3969/j.issn.1004-4388.2005.05.006

    AN Xiaoping, LI Xiangfang, CHENG Shiqing, et al. Comparative analysis for permeability acquired from different methods[J]. Well Testing, 2005, 14(5): 14–17. doi:  10.3969/j.issn.1004-4388.2005.05.006
    [12] 陈长民, 施和生, 许仕策, 等. 珠江口盆地(东部)第三系油气藏形成条件[M]. 北京: 科学出版社, 2003: 147-153.

    CHEN Changmin, SHI Hesheng, XU Shice, et al. The conditions of hydrocarbon accumulation of the tertiary petroleum system in the Pearl River Mouth Basin[M]. Beijing: Science Press, 2003: 147-153.
    [13] 张振城. 储层损害比与产能预测[D]. 北京: 中国石油大学(北京), 2006.

    ZHANG Zhencheng. Formation damage and prediction of productivity[D]. Beijing: China University of Petroleum(Beijing), 2006.
    [14] 王清辉,冯进,管耀,等. 基于动态资料的低孔低渗砂岩储层渗透率测井评价方法: 以陆丰凹陷古近系为例[J]. 石油学报,2019,40(supplement1):206–216.

    WANG Qinghui, FENG Jin, GUAN Yao, et al. Permeability logging evaluation method of low-porosity low-permeability sandstone reservoirs based on dynamic data: a case study of Paleogene strata in Lufeng Sag[J]. Acta Petrolei Sinica, 2019, 40(supplement1): 206–216.
    [15] 熊万林,朱俊章,施洋,等. 珠江口盆地珠一坳陷原油密度分布及其成因[J]. 海洋地质前沿,2019,35(1):43–52.

    XIONG Wanlin, ZHU Junzhang, SHI Yang, et al. Density distribution of crude oil in the Zhuyi Depression of Pearl River Mouth Basin and control factors[J]. Marine Geology Frontiers, 2019, 35(1): 43–52.
    [16] 石玉江,张海涛,侯雨庭,等. 基于岩石物理相分类的测井储层参数精细解释建模[J]. 测井技术,2005,29(4):328–332. doi:  10.3969/j.issn.1004-1338.2005.04.014

    SHI Yujiang, ZHANG Haitao, HOU Yuting, et al. The fine logging interpretation method based on petrophysical faces[J]. Well Logging Technology, 2005, 29(4): 328–332. doi:  10.3969/j.issn.1004-1338.2005.04.014
    [17] 孙利国, 王玉梅, 何石. 利用平面径向流公式预测油层自然产能的方法[J]. 测井技术, 2000, 24(增刊1): 527–530

    SUN Liguo, WANG Yumei, HE Shi. A method to predict natural productivity in oil zones with the plan radial flow formula[J]. Well Logging Technology, 2000, 24(supplement 1): 527–530.
  • [1] 李江, 陈先超, 高平, 舒成龙.  考虑应力敏感效应的裂缝性碳酸盐岩气井拟稳态产能预测方法, 石油钻探技术. 2021, 49(3): 111-116. doi: 10.11911/syztjs.2021032
    [2] 周鹏, 杜孝友, 曹砚锋, 于继飞, 江海畏, 薛启龙.  电爆冲击波增渗解堵技术试验研究, 石油钻探技术. 2020, 48(2): 98-103. doi: 10.11911/syztjs.2020033
    [3] 姚晓, 葛荘, 汪晓静, 周仕明, 解志益, 何青水.  加砂油井水泥石高温力学性能衰退机制研究进展, 石油钻探技术. 2018, 46(1): 17-23. doi: 10.11911/syztjs.2018008
    [4] 张鑫.  南苏丹Palouge油田滤饼清除技术, 石油钻探技术. 2018, 46(5): 46-51. doi: 10.11911/syztjs.2018083
    [5] 田亚鹏, 鞠斌山, 胡杰.  考虑蒸汽超覆的稠油蒸汽吞吐产能预测模型, 石油钻探技术. 2018, 46(1): 110-116. doi: 10.11911/syztjs.2018028
    [6] 邢岳堃, 张广清, 李世远, 王元元, 杨潇.  套损井与取心井相似井段识别及其岩石力学参数确定方法, 石油钻探技术. 2017, 45(4): 33-40. doi: 10.11911/syztjs.201704006
    [7] 葛红旗, 金科年, 吴沁轩.  基于测井-地震信息的碳酸盐岩储层裂缝预测方法, 石油钻探技术. 2017, 45(5): 118-126. doi: 10.11911/syztjs.201705021
    [8] 张伟, 冯进, 胡文亮, 夏瑜.  L油田古近系油藏含水率计算方法及其应用, 石油钻探技术. 2016, 44(1): 105-110. doi: 10.11911/syztjs.201601020
    [9] 朱林奇, 张冲, 胡佳, 魏旸, 郭聪.  基于单元体模型的核磁共振测井渗透率评价方法, 石油钻探技术. 2016, 44(4): 120-126. doi: 10.11911/syztjs.201604021
    [10] 马帅, 张风波, 洪楚侨, 刘双琪, 钟家峻, 王世朝.  多层合采阶梯井产能计算模型的建立与求解, 石油钻探技术. 2015, 43(5): 94-99. doi: 10.11911/syztjs.201505016
    [11] 赵雷.  川西地区复杂水平井泵送电缆释放测井工艺, 石油钻探技术. 2015, 43(6): 66-69. doi: 10.11911/syztjs.201506012
    [12] 廖东良, 肖立志, 张元春.  基于矿物组分与断裂韧度的页岩地层脆性指数评价模型, 石油钻探技术. 2014, 42(4): 37-41. doi: 10.3969/j.issn.1001-0890.2014.04.007
    [13] 耿智, 樊洪海, 陈勉, 王金钟, 纪荣艺, 景宁.  区域三维空间岩石可钻性预测方法研究与应用, 石油钻探技术. 2014, 42(5): 80-84. doi: 10.11911/syztjs.201405014
    [14] 陈朝晖, 谢一婷, 邓勇.  疏松砂岩油藏出砂应力敏感实验研究, 石油钻探技术. 2013, 41(1): 61-64. doi: 10.3969/j.issn.1001-0890.2013.01.012
    [15] 郭胜来, 李建华, 步玉环.  低温下物理和化学激发对矿渣活性的影响研究, 石油钻探技术. 2013, 41(3): 31-34. doi: 10.3969/j.issn.1001-0890.2013.03.006
    [16] 杨刚, 汪志明, 孙波, 陈添.  密切值法在煤层气井井型优选中的应用研究, 石油钻探技术. 2013, 41(2): 49-53. doi: 10.3969/j.issn.1001-0890.2013.02.010
    [17] 孟红霞, 陈德春, 潘志华, 吴晓东.  爆燃压裂油井产能计算模型与增产效果分析, 石油钻探技术. 2012, 40(6): 62-66. doi: 10.3969/j.issn.1001-0890.2012.06.013
    [18] 许成元, 康毅力, 游利军, 王铭伟, 李大奇.  裂缝性储层渗透率返排恢复率的影响因素, 石油钻探技术. 2012, 40(6): 17-21. doi: 10.3969/j.issn.1001-0890.2012.06.004
    [19] 范乐宾, 刘月田, 顾少华, 顾文欢, 廖恒杰, 敖坤.  油藏各向异性对鱼骨井结构影响的数值模拟研究, 石油钻探技术. 2011, 39(5): 68-73. doi: 10.3969/j.issn.1001-0890.2011.05.015
    [20] 孙海成, 汤达祯, 蒋廷学.  页岩气储层裂缝系统影响产量的数值模拟研究, 石油钻探技术. 2011, 39(5): 63-67. doi: 10.3969/j.issn.1001-0890.2011.05.014
  • 加载中
图(6) / 表ll (3)
计量
  • 文章访问数:  62
  • HTML全文浏览量:  44
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-29
  • 修回日期:  2021-08-22
  • 网络出版日期:  2021-09-17

目录

    /

    返回文章
    返回