陆相页岩油录井重点发展领域与技术体系构建

王志战 杜焕福 李香美 牛强

王志战, 杜焕福, 李香美, 牛强. 陆相页岩油录井重点发展领域与技术体系构建[J]. 石油钻探技术, 2021, 49(4): 155-162. doi: 10.11911/syztjs.2021093
引用本文: 王志战, 杜焕福, 李香美, 牛强. 陆相页岩油录井重点发展领域与技术体系构建[J]. 石油钻探技术, 2021, 49(4): 155-162. doi: 10.11911/syztjs.2021093
WANG Zhizhan, DU Huanfu, LI Xiangmei, NIU Qiang. Key Development Fields and Construction of Technical System for Logging of Continental Shale Oil[J]. Petroleum Drilling Techniques, 2021, 49(4): 155-162. doi: 10.11911/syztjs.2021093
Citation: WANG Zhizhan, DU Huanfu, LI Xiangmei, NIU Qiang. Key Development Fields and Construction of Technical System for Logging of Continental Shale Oil[J]. Petroleum Drilling Techniques, 2021, 49(4): 155-162. doi: 10.11911/syztjs.2021093

陆相页岩油录井重点发展领域与技术体系构建

doi: 10.11911/syztjs.2021093
基金项目: 国家能源页岩油技术研发中心重点实验室专项“页岩油双甜点高精度实时评价技术研究”(编号:KL20033)资助
详细信息
    作者简介:

    王志战(1969—),男,山东栖霞人,1991年毕业于西北大学岩矿及地球化学专业,2006年获西北大学矿产普查与勘探专业博士学位,正高级工程师,主要从事录井基础理论与新技术新方法方面的研究工作。E-mail:wangzz.sripe@sinopec.com。

  • 中图分类号: TE132.1

Key Development Fields and Construction of Technical System for Logging of Continental Shale Oil

  • 摘要: 我国陆相页岩油勘探开发刚起步,而录井作为地质工程一体化的纽带,其重点发展领域尚不明确,没有建立系统的采集与评价技术体系,在一定程度上制约了页岩油录井技术的发展与录井作用的充分发挥。为此,在系统分析国内外页岩油录井技术现状与页岩油地质工程一体化需求的基础上,从矿物组分定量分析与有利岩相随钻识别、储集性与含油性评价、可动性评价、可压性评价等4个方面深入分析了录井评价的内容、难点及存在的不足,提出应重点发展漫反射傅里叶变换红外光谱(DRIFTS)、钻井液含油性核磁共振在线录井与岩样T1T2二维核磁共振录井、录井岩石力学3个领域。在此基础上,根据针对性、有效性、经济性的原则,分中低成熟度、中高成熟度2种类型,建立了基于储集性、含油性、可动性、可压性、可钻性评价的录井技术体系,以期促进页岩油录井技术的进步和指导生产实践。
  • 图  1  地层压力与地应力之间的关系

    Figure  1.  Relationship between formation pressure and geostress

    表  1  陆相页岩油录井技术体系

    Table  1.   Technical system for the logging of continental shale oil

    序号录井项目评价内容评价目的 推荐组合
    储集性含油性可动性可压性可钻性 中低成熟度中高成熟度
    1地质录井裂缝描述
    岩相识别
    2元素录井岩相识别
    地质导向
    沉积环境
    岩石力学
    脆性评价
    3XRD矿物录井岩相识别可选可选
    脆性矿物含量
    4薄片鉴定岩相识别可选可选
    5QemScan/RoqScan矿物含量可选可选
    6DRIFTS脆性矿物含量
    黏土矿物
    干酪根类型
    成熟度
    7气测录井含气量
    气油比
    8岩样二维核磁共振孔隙度可选
    孔隙结构
    含油饱和度
    可动油饱和度
    9钻井液核磁共振含油量可选
    原油密度/黏度
    10岩石热解含油量可选
    有机碳
    11定量荧光含油量可选
    油性指数
    12荧光薄片含油分布可选
    13碳同位素成熟度可选可选
    14工程录井孔隙压力
    地质导向
    15岩屑声波弹性参数
    地应力参数
    强度参数
    压力参数
    下载: 导出CSV
  • [1] 孙焕泉,蔡勋育,周德华,等. 中国石化页岩油勘探实践与展望[J]. 中国石油勘探,2019,24(5):569–575. doi:  10.3969/j.issn.1672-7703.2019.05.004

    SUN Huanquan, CAI Xunyu, ZHOU Dehua, et al. Practice and prospect of Sinopec shale oil exploration[J]. China Petroleum Exploration, 2019, 24(5): 569–575. doi:  10.3969/j.issn.1672-7703.2019.05.004
    [2] 杨雷,金之钧. 全球页岩油发展及展望[J]. 中国石油勘探,2019,24(5):553–559. doi:  10.3969/j.issn.1672-7703.2019.05.002

    YANG Lei, JIN Zhijun. Global shale oil development and prospects[J]. China Petroleum Exploration, 2019, 24(5): 553–559. doi:  10.3969/j.issn.1672-7703.2019.05.002
    [3] 杜金虎,胡素云,庞正炼,等. 中国陆相页岩油类型、潜力及前景[J]. 中国石油勘探,2019,24(5):560–568. doi:  10.3969/j.issn.1672-7703.2019.05.003

    DU Jinhu, HU Suyun, PANG Zhenglian, et al. The types, potentials and prospects of continental shale oil in China[J]. China Petroleum Exploration, 2019, 24(5): 560–568. doi:  10.3969/j.issn.1672-7703.2019.05.003
    [4] 门相勇,王陆新,王越,等. 新时代我国油气勘探开发战略格局与2035年展望[J]. 中国石油勘探,2021,26(3):1–8.

    MEN Xiangyong, WANG Luxin, WANG Yue, et al. Strategic pattern of China’s oil and gas exploration and development in the new era and prospects for 2035[J]. China Petroleum Exploration, 2021, 26(3): 1–8.
    [5] 赵文智,胡素云,侯连华. 页岩油地下原位转化的内涵与战略地位[J]. 石油勘探与开发,2018,45(4):537–545.

    ZHAO Wenzhi, HU Suyun, HOU Lianhua. Connotation and strategic role of in-situ conversion processing of shale oil underground in the onshore China[J]. Petroleum Exploration and Development, 2018, 45(4): 537–545.
    [6] GB/T 38718—2020 页岩油地质评价方法[S].

    GB/T 38718—2020 Geological evaluating methods for shale oil[S].
    [7] 崔宝文,陈春瑞,林旭东,等. 松辽盆地古龙页岩油甜点特征及分布[J]. 大庆石油地质与开发,2020,39(3):45–55.

    CUI Baowen, CHEN Chunrui, LIN Xudong, et al. Characteristics and distribution of sweet spots in Gulong shale oil reserviors of Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(3): 45–55.
    [8] 王志战. 国内非常规油气录井技术进展及发展趋势[J]. 石油钻探技术,2017,45(6):1–7.

    WANG Zhizhan. Technical progress and developing trends in unconventional oil and gas mud logging in China[J]. Petroleum Drilling Techniques, 2017, 45(6): 1–7.
    [9] 王志战. 非常规油气层录井综合解释的思路与方法[J]. 录井工程,2018,29(2):1–4. doi:  10.3969/j.issn.1672-9803.2018.02.001

    WANG Zhizhan. The idea and methods of surface logging comprehensive interpretation of unconventional reservoir[J]. Mud Logging Engineering, 2018, 29(2): 1–4. doi:  10.3969/j.issn.1672-9803.2018.02.001
    [10] 谢广龙. 胜利油区页岩油井现场录井系列方法[J]. 录井工程,2016,27(4):21–26. doi:  10.3969/j.issn.1672-9803.2016.04.005

    XIE Guanglong. On-site mud logging methods for shale oil wells in Shengli oil area[J]. Mud Logging Engineering, 2016, 27(4): 21–26. doi:  10.3969/j.issn.1672-9803.2016.04.005
    [11] 张丽艳,秦文凯. 松辽盆地古龙凹陷页岩油录井解释评价方法研究[J]. 录井工程,2019,30(4):55–61. doi:  10.3969/j.issn.1672-9803.2019.04.011

    ZHANG Liyan, QIN Wenkai. Mud logging interpretation and evaluation method of shale oil in Gulong Sag, Songliao Basin[J]. Mud Logging Engineering, 2019, 30(4): 55–61. doi:  10.3969/j.issn.1672-9803.2019.04.011
    [12] 陈贺, 谢文敏, 苏沛强, 等. 录井技术组合在大港陆相页岩油勘探开发中的应用[J]. 录井工程, 2020, 31(增刊1): 37–41.

    CHEN He, XIE Wenmin, SU Peiqiang, et al. Application of technical combination for mud logging in the exploration and development of continental shale oil in Dagang[J]. Mud Logging Engineering, 2020, 31(supplement1): 37–41.
    [13] 马青春. 页岩油录井综合评价方法探索: 以冀东油田NP2-SL井为例[J]. 录井工程, 2020, 31(增刊1): 13–18.

    MA Qingchun. Exploration of the comprehensive evaluation method for shale oil logging: A case study of NP 2-SL well in Jidong Oilfield[J]. Mud Logging Engineering, 2020, 31(supplement1): 13–18.
    [14] 张文雅,颜怀羽,李娟,等. 页岩油“三类、三性”录井评价方法及其在饶阳凹陷的应用[J]. 录井工程,2020,31(2):79–85. doi:  10.3969/j.issn.1672-9803.2020.02.014

    ZHANG Wenya, YAN Huaiyu, LI Juan, et al. The mud logging evaluation method of three types and three properties of shale oil and its application in Raoyang Sag[J]. Mud Logging Engineering, 2020, 31(2): 79–85. doi:  10.3969/j.issn.1672-9803.2020.02.014
    [15] 葛瑞全,李家贵,井小艳,等. 电镜扫描矿物定量评价技术在碎屑岩储集层评价中的应用[J]. 录井工程,2017,28(3):109–113. doi:  10.3969/j.issn.1672-9803.2017.03.023

    GE Ruiquan, LI Jiagui, JING Xiaoyan, et al. Application of electron microscope scanning mineral quantitative evaluation technique in clastic reservoir evaluation[J]. Mud Logging Engineering, 2017, 28(3): 109–113. doi:  10.3969/j.issn.1672-9803.2017.03.023
    [16] 王玉满,王淑芳,董大忠,等. 川南下志留统龙马溪组页岩岩相表征[J]. 地学前缘,2016,23(1):119–133.

    WANG Yuman, WANG Shufang, DONG Dazhong, et al. Lithofacies characterization of Longmaxi Fomation of the lower Silurian, southern Sichuan[J]. Earth Science Frontiers, 2016, 23(1): 119–133.
    [17] 柳波,石佳欣,付晓飞,等. 陆相泥页岩层系岩相特征与页岩油富集条件:以松辽盆地古龙凹陷白垩系青山口组一段富有机质泥页岩为例[J]. 石油勘探与开发,2018,45(5):828– 838.

    LIU Bo, SHI Jiaxin, FU Xiaofei, et al. Petrological characteristics and shale oil enrichment of lacustrine fine-grained sedimentary system: a case study of organic-rich shale in first member of Cretaceous Qingshankou Formation in Gulong Sag, Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2018, 45(5): 828– 838.
    [18] 金成志,董万百,白云风,等. 松辽盆地古龙页岩岩相特征与成因[J]. 大庆石油地质与开发,2020,39(3):35–44.

    JIN Chengzhi, DONG Wanbai, BAI Yunfeng, et al. Lithofacies characteristics and Genesis analysis of Gulong shale in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(3): 35–44.
    [19] 王志战,李新,李三国. 高分辨率核磁共振录井技术进展及前景展望[J]. 录井工程,2017,28(2):1–3. doi:  10.3969/j.issn.1672-9803.2017.02.001

    WANG Zhizhan, LI Xin, LI Sanguo. Progress and prospect of high resolution NMR surface logging technology[J]. Mud Logging Engineering, 2017, 28(2): 1–3. doi:  10.3969/j.issn.1672-9803.2017.02.001
    [20] 王志战. 录井技术与方法的创新机制[J]. 录井工程,2017,28(3):1–5. doi:  10.3969/j.issn.1672-9803.2017.03.001

    WANG Zhizhan. Innovation mechanism of surface logging technology and method[J]. Mud Logging Engineering, 2017, 28(3): 1–5. doi:  10.3969/j.issn.1672-9803.2017.03.001
    [21] WANG Zhizhan, QIN Liming, LU Huangsheng, et al. Two dimentional NMR analysis and evaluation of oil or gas shale[R]. SPE 176184, 2015.
    [22] 王志战. 页岩油储层DT2核磁共振解释方法[J]. 天然气地球科学,2020,31(8):1178–1184.

    WANG Zhizhan. Discuss on D-T2 NMR interpretation of oil shale[J]. Natural Gas Geoscience, 2020, 31(8): 1178–1184.
    [23] LI Jinbu, JIANG Chunqing, WANG Min, et al. Adsorbed and free hydrocarbons in unconventional shale reservoir a new insight from NMR T1-T2 maps[J]. Marine and Petroleum Geology, 2020, 116: 104311. doi:  10.1016/j.marpetgeo.2020.104311
    [24] FLEURY M, ROMERO-SARMIENTO M. Characterization of shales using T1-T2 NMR maps[J]. Journal of Petroleum Science and Engineering, 2016, 137: 55–62. doi:  10.1016/j.petrol.2015.11.006
    [25] HAN J, DAIGLE H, XIAO T, et al. A comparison of clustering algorithms applied to fluid characterization using NMR T1-T2 maps of shale[J]. Computers and Geosciences, 2019, 126: 52–61. doi:  10.1016/j.cageo.2019.01.021
    [26] SUN Yong, ZHAI Cheng, XU Jizhao, et al. A method for accurate characterisation of the pore structure of a coal mass based on two-dimensional nuclear magnetic resonance T1-T2[J]. Fuel, 2020, 262: 116574. doi:  10.1016/j.fuel.2019.116574
    [27] KAUSIK R, FELLAH K, RYLANDER E, et al. NMR Relaxometry in shale and implications for logging[J]. Petrophysics: the SPWLA Journal of Formation Evaluation and Reservoir Description, 2016, 57(4): 339–350.
    [28] MA Xinhua, WANG Hongyan, ZHOU Shangwen, et al. Insights into NMR response characteristics of shales and its application in shale gas reservoir evaluation[J]. Journal of Natural Gas Science and Engineering, 2020, 84: 103674. doi:  10.1016/j.jngse.2020.103674
    [29] KHATIBI S, OSTADHASSAN M, XIE Z H, et al. NMR relaxometry a new approach to detect geochemical properties of organic matter in tight shales[J]. Fuel, 2019, 235: 167–177. doi:  10.1016/j.fuel.2018.07.100
    [30] 严伟丽,高楚桥,赵彬,等. 基于气测录井资料的气油比定量计算方法[J]. 科学技术与工程,2020,20(23):9287–9292.

    YAN Weili, GAO Chuqiao, ZHAO Bin, et al. Quantitative calculation method of gas-oil ratio in gas logging data[J]. Science Technology and Engineering, 2020, 20(23): 9287–9292.
    [31] 张新华,邹筱春,赵红艳,等. 利用X荧光元素录井资料评价页岩脆性的新方法[J]. 石油钻探技术,2012,40(5):92–95.

    ZHANG Xinhua, ZOU Xiaochun, ZHAO Hongyan, et al. A new method of evaluation shale brittleness using X-ray fluorescence element logging data[J]. Petroleum Drilling Techniques, 2012, 40(5): 92–95.
    [32] 王志战,朱祖扬,李丰波,等. 便携式岩屑声波录井系统研制与测试[J]. 石油钻探技术,2020,48(6):109–115. doi:  10.11911/syztjs.2020141

    WANG Zhizhan, ZHU Zuyang, LI Fengbo, et al. Development and testing of a portable acoustic logging system on cuttings[J]. Petroleum Drilling Techniques, 2020, 48(6): 109–115. doi:  10.11911/syztjs.2020141
    [33] SY/T 6937—2013 多极子阵列声波测井资料处理与解释规范[S].

    SY/T 6937—2013 Specifications for the processing and interpretation of logging data of multipole array acoustic[S].
    [34] SY/T 5623—2009 地层压力预(监)测方法[S].

    SY/T 5623—2009 Prediction and detection methods of formation pressure[S].
    [35] SY/T 5940—2019 储层参数的测井计算方法[S].

    SY/T 5940—2019 Log computational method for parameters of reservoir[S].
    [36] Q/SH 0275.1—2009 钻井地质环境因素描述技术规范 第1部分: 岩石力学参数求取技术方法[S].

    Q/SH 0275.1—2009 Technical specifications for geologic environmental factor description in drilling: part 1: technical procedures for acquisition of rock mechanic parameters[S].
    [37] Q/SH 0275.2—2009 钻井地质环境因素描述技术规定 第2部分: 岩石可钻性求取技术方法[S].

    Q/SH 0275.2—2009 Technical specifications for geologic environmental factor description in drilling: part 2: technical procedures for acquisition of rock drillability[S].
    [38] HERRON M M, LOAN M E, CHARSKY A M, et al. Kerogen content and maturity, mineralogy and clay typing from drifts analysis of cuttings or core[J]. Petrophysics: the SPWLA Journal of Formation Evaluation and Reservoir Description, 2014, 55(5): 435–446.
    [39] LOAN M E L, HERRON M M. CRADDOCK P, et al. Rapid quantification of mineralogy, organic matter, and thermal maturity of cuttings with diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS): a Permian Basin case study[R]. URTEC 2671423, 2017.
    [40] LI Sanguo, XIAO Lizhi, LI Xin, et al. A novel NMR instrument for real time drilling fluid analysis[J]. Microporous and Mesoporous Materials, 2018, 269: 138–141. doi:  10.1016/j.micromeso.2017.08.038
    [41] WANG Zhizhan, QIN Liming, LU Huangsheng, et al. Determining the fluorescent components in drilling fluid by using NMR method[J]. Chinese Journal of Geochemistry, 2015, 34(3): 410–415. doi:  10.1007/s11631-015-0049-3
    [42] 王志战,魏杨旭,秦黎明,等. 油基钻井液条件下油层的NMR判识方法[J]. 波谱学杂志,2015,32(3):481–488. doi:  10.11938/cjmr20150309

    WANG Zhizhan, WEI Yangxu, QIN Liming, et al. Oil layer identification by NMR with the use of oil-based drilling fluid[J]. Chinese Journal of Magnetic Resonance, 2015, 32(3): 481–488. doi:  10.11938/cjmr20150309
    [43] 罗发强,王志战,张元春,等. 复杂地层岩石力学参数实时求取方法:以塔里木盆地巴楚隆起为例[J]. 科学技术与工程,2020,20(17):6842–6847. doi:  10.3969/j.issn.1671-1815.2020.17.021

    LUO Faqiang, WANG Zhizhan, ZHANG Yuanchun, et al. The real-time calculation methods of rock mechanics parameters in complex strata: a case study of the Bachu Uplift in Tarim Basin[J]. Science Technology and Engineering, 2020, 20(17): 6842–6847. doi:  10.3969/j.issn.1671-1815.2020.17.021
    [44] RICKMAN R, MULLEN M J, PETRE J E, et al. A practical use of shale petrophysics for stimulation design optimization: all shale plays are not clones of the Barnett Shale[R]. SPE 115258, 2008.
    [45] KUMAR V, SONDERGELD C H., RAI C S. Nano to macro mechanical characterization of shale[R]. SPE 159804, 2012.
    [46] 路保平,袁多,吴超,等. 井震信息融合指导钻井技术[J]. 石油勘探与开发,2020,47(6):1227–1234.

    LU Baoping, YUAN Duo, WU Chao, et al. A drilling technology guided by well-seismic information integration[J]. Petroleum Exploration and Development, 2020, 47(6): 1227–1234.
  • [1] 王增林, 鲁明晶, 张潦源, 李爱山, 孟勇, 郑彬涛.  东营凹陷陆相页岩油强化缝网改造生产制度优化研究, 石油钻探技术. doi: 10.11911/syztjs.2021074
    [2] 陈作, 刘红磊, 李英杰, 沈子齐, 许国庆.  国内外页岩油储层改造技术现状及发展建议, 石油钻探技术. doi: 10.11911/syztjs.2021081
    [3] 蒋廷学, 王海涛.  中国石化页岩油水平井分段压裂技术现状与发展建议, 石油钻探技术. doi: 10.11911/syztjs.2021071
    [4] 李二党, 韩作为, 高祥瑞, 马明宇, 邱钧超.  不同注气介质驱替致密油藏微观孔隙动用特征研究, 石油钻探技术. doi: 10.11911/syztjs.2020078
    [5] 李新, 米金泰, 张卫, 姚金志, 李三国.  井下随钻核磁共振流体分析装置设计与试验验证, 石油钻探技术. doi: 10.11911/syztjs.2020027
    [6] 王志战.  枯竭砂岩气藏型储气库录井关键技术研究, 石油钻探技术. doi: 10.11911/syztjs.2019059
    [7] 杨明清.  俄罗斯录井技术现状与应用前景分析, 石油钻探技术. doi: 10.11911/syztjs.2018065
    [8] 万亚旗, 陈会年, 杨明清, 张杰.  录井装备技术现状及发展探讨, 石油钻探技术. doi: 10.11911/syztjs.2018004
    [9] 邢岳堃, 张广清, 李世远, 王元元, 杨潇.  套损井与取心井相似井段识别及其岩石力学参数确定方法, 石油钻探技术. doi: 10.11911/syztjs.201704006
    [10] 魏纳, 陈光凌, 郭平, 李清平, 吕鑫.  天然气水合物脱气装置研制及性能试验, 石油钻探技术. doi: 10.11911/syztjs.201702020
    [11] 朱林奇, 张冲, 胡佳, 魏旸, 郭聪.  基于单元体模型的核磁共振测井渗透率评价方法, 石油钻探技术. doi: 10.11911/syztjs.201604021
    [12] 韦青, 李治平, 白瑞婷, 张甜甜, 南珺祥.  微观孔隙结构对致密砂岩渗吸影响的试验研究, 石油钻探技术. doi: 10.11911/syztjs.201605019
    [13] 桂俊川, 夏宏泉, 邹勇, 弓浩浩.  基于测井岩石力学参数计算砂泥岩储层含气饱和度的新方法, 石油钻探技术. doi: 10.11911/syztjs.201501014
    [14] 张晓东, 张毅, 苟如意, 何石, 王海娟.  基于岩石性能试验的冲旋钻井钻齿破岩仿真, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2014.01.021
    [15] 廖东良, 肖立志, 张元春.  基于矿物组分与断裂韧度的页岩地层脆性指数评价模型, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2014.04.007
    [16] 程万, 金衍, 陈勉, 徐彤, 陈刚.  一种基于页岩损伤规律的井壁坍塌压力确定方法, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2014.02.008
    [17] 杨恒林, 申瑞臣, 付利.  含气页岩组分构成与岩石力学特性, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2013.05.006
    [18] 刘彦学, 王宝峰, 刘建坤.  压裂液对低渗砂岩气藏的水敏性伤害实验研究, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2013.01.014
    [19] 陈勉, 金衍.  基于岩心分析的页岩气压裂工艺参数优选, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2012.04.002
    [20] 李庆辉, 陈勉, 金衍, 侯冰, 张家振.  页岩气储层岩石力学特性及脆性评价, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2012.04.004
  • 加载中
图(1) / 表ll (1)
计量
  • 文章访问数:  171
  • HTML全文浏览量:  79
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-07
  • 修回日期:  2021-07-05
  • 网络出版日期:  2021-07-21
  • 刊出日期:  2021-08-25

目录

    /

    返回文章
    返回