济阳坳陷泥灰质纹层页岩脆性各向异性数值模拟研究

贾庆升 钟安海 张子麟 丁然

贾庆升, 钟安海, 张子麟, 丁然. 济阳坳陷泥灰质纹层页岩脆性各向异性数值模拟研究[J]. 石油钻探技术, 2021, 49(4): 78-84. doi: 10.11911/syztjs.2021086
引用本文: 贾庆升, 钟安海, 张子麟, 丁然. 济阳坳陷泥灰质纹层页岩脆性各向异性数值模拟研究[J]. 石油钻探技术, 2021, 49(4): 78-84. doi: 10.11911/syztjs.2021086
JIA Qingsheng, ZHONG Anhai, ZHANG Zilin, DING Ran. Numerical Simulation of the Brittleness Anisotropy of Laminated Argillaceous Limestone Facies Shale in the Jiyang Depression[J]. Petroleum Drilling Techniques, 2021, 49(4): 78-84. doi: 10.11911/syztjs.2021086
Citation: JIA Qingsheng, ZHONG Anhai, ZHANG Zilin, DING Ran. Numerical Simulation of the Brittleness Anisotropy of Laminated Argillaceous Limestone Facies Shale in the Jiyang Depression[J]. Petroleum Drilling Techniques, 2021, 49(4): 78-84. doi: 10.11911/syztjs.2021086

济阳坳陷泥灰质纹层页岩脆性各向异性数值模拟研究

doi: 10.11911/syztjs.2021086
基金项目: 中国石化科技攻关项目“陆相页岩油强化体积改造缝网压裂技术研究”(编号:P20069-6)部分研究内容
详细信息
    作者简介:

    贾庆升(1968—),男,山东龙口人,1990年毕业于石油大学(华东)矿业机械专业,2004年获石油大学(华东)石油与天然气工程专业工程硕士学位,正高级工程师,主要从事采油新工艺新技术研发工作。E-mail:jiaqingsheng.slyt@sinopec.com

  • 中图分类号: TE311+.2

Numerical Simulation of the Brittleness Anisotropy of Laminated Argillaceous Limestone Facies Shale in the Jiyang Depression

  • 摘要: 为了掌握济阳坳陷博兴洼陷北部沙四纯上亚段页岩脆性各向异性的规律,选用该区块樊页X井泥灰质纹层页岩岩心,以通过室内试验获得的岩心应力–应变曲线为基准标定岩石力学参数,采用三维数值模拟方法,计算分析了岩心的泊松比、弹性模量和强度参数;并采用4种典型的脆性指数计算方法,计量了所有岩心的脆性指数。研究发现:随着围压升高,各力学参数的各向异性度都呈下降趋势,且弹性参数较强度参数的各向异性对围压变化更为敏感,因此建议采用弹性参数评价岩心力学特性的各向异性;基于能量守恒原理的脆性指数计算方法计算出的脆性指数较为客观;脆性指数随围压升高而显著降低,且随着层理倾角增大,脆性指数总体上呈先降低、后升高的变化趋势,也即在与内摩擦角角度接近的方向,脆性指数最低,0°和90°取心方向上的脆性指数较高。研究结果可为济阳坳陷页岩油储层可压性评价及选井选层提供理论依据。
  • 图  1  页岩岩样的取心方向及数值岩心模型

    Figure  1.  Coring directions and numerical models of shale cores

    图  2  岩心单轴和三轴破裂模式及其与数值岩心模型的对比

    Figure  2.  Core failure modes under uniaxial and triaxial loading and their comparison with those of numerical core models

    图  3  物理岩心与数值岩心模型全应力–应变曲线对比

    Figure  3.  Comparison between full stress–strain curves of physical cores and numerical core models

    图  4  不同围压和层理倾角数值岩心模型的应力–应变曲线

    Figure  4.  Stress–strain curves of numerical core models with different confining pressure and bedding dips

    图  5  不同围压下页岩岩心弹性模量、泊松比和强度与层理倾角的关系曲线

    Figure  5.  Relationship between elastic modulus, Poisson's ratio and compressive strength of shale core with the bedding dip under different confining pressure

    图  6  抗压强度、弹性模量和泊松比的各向异性度随围压的变化

    Figure  6.  Variation in degree of anisotropy of compressive strength, elastic modulus and Poisson’s ratios with confining pressure

    图  7  典型岩石应力-应变曲线和脆性指数计算模型

    Figure  7.  Typical stress–strain curves for rock and the brittleness index calculation model

    图  8  层理倾角、地层围压对4种脆性指数的影响

    Figure  8.  Influence of bedding angle and formation confining pressure on 4 brittleness indices

    表  1  页岩细观岩心力学参数的标定值

    Table  1.   Calibrated meso-mechanical parameters of shale cores

    力学参数页岩层理
    弹性模量均值/GPa566
    单轴抗压强度均值/MPa60060
    均值度系数22
    压拉比1015
    内摩擦角/(°)3520
    泊松比0.210.23
    残余强度系数0.10.1
    下载: 导出CSV
  • [1] 邹才能,董大忠,王玉满,等. 中国页岩气特征、挑战及前景 (二)[J]. 石油勘探与开发,2016,43(2):166–178. doi:  10.11698/PED.2016.02.02

    ZOU Caineng, DONG Dazhong, WANG Yuman, et al. Shale gas in China: characteristics, challenges and prospects (Ⅱ)[J]. Petroleum Exploration and Development, 2016, 43(2): 166–178. doi:  10.11698/PED.2016.02.02
    [2] JOHNSTON J E, CHRISTENSEN N I. Seismic anisotropy of shales[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B4): 5991–6003. doi:  10.1029/95JB00031
    [3] JAEGER J C. Shear failure of anisotropic rocks[J]. Geological Magazine, 1960, 97(1): 65–72. doi:  10.1017/S0016756800061100
    [4] NIANDOU H, SHAO J F, HENRY J P, et al. Laboratory investigation of the mechanical behaviour of Tournemire shale[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(1): 3–16. doi:  10.1016/S1365-1609(97)80029-9
    [5] KUILA U, DEWHURST D N, SIGGINS A F, et al. Stress anisotropy and velocity anisotropy in low porosity shale[J]. Tectonophysics, 2011, 503(1/2): 34–44.
    [6] 陈天宇,冯夏庭,张希巍,等. 黑色页岩力学特性及各向异性特性试验研究[J]. 岩石力学与工程学报,2014,33(9):1772–1779.

    CHEN Tianyu, FENG Xiating, ZHANG Xiwei, et al. Experimental study on mechanical and anisotropic properties of black shale[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(9): 1772–1779.
    [7] 衡帅,杨春和,张保平,等. 页岩各向异性特征的试验研究[J]. 岩土力学,2015,36(3):609–616.

    HENG Shuai, YANG Chunhe, ZHANG Baoping, et al. Experimental research on anisotropic properties of shale[J]. Rock and Soil Mechanics, 2015, 36(3): 609–616.
    [8] 王跃鹏,刘向君,梁利喜. 鄂尔多斯盆地延长组张家滩陆相页岩各向异性及能量演化特征[J]. 岩性油气藏,2019,31(5):149–160.

    WANG Yuepeng, LIU Xiangjun, LIANG Lixi. Anisotropy and energy evolution characteristics of Zhangjiatan continental shale of Yanchang Formation in Ordos Basin[J]. Lithologic Reservoirs, 2019, 31(5): 149–160.
    [9] 洪国斌,陈勉,卢运虎,等. 川南深层页岩各向异性特征及对破裂压力的影响[J]. 石油钻探技术,2018,46(3):78–85.

    HONG Guobin, CHEN Mian, LU Yunhu, et al. Study on the anisotropy characteristics of deep shale in the Southern Sichuan Basin and their impacts on fracturing pressure[J]. Petroleum Drilling Techniques, 2018, 46(3): 78–85.
    [10] 宁凡,邹妞妞,张大权,等. 黔北地区下寒武统牛蹄塘组页岩特征研究[J]. 特种油气藏,2020,27(1):62–67, 135. doi:  10.3969/j.issn.1006-6535.2020.01.009

    NING Fan, ZOU Niuniu, ZHANG Daquan, et al. Shale characterization of the Lower Cambrian Niutitang Formation in Northern Guizhou[J]. Special Oil & Gas Reservoirs, 2020, 27(1): 62–67, 135. doi:  10.3969/j.issn.1006-6535.2020.01.009
    [11] 范宇,王佳珺,刘厚彬,等. 复杂载荷下深层脆性页岩力学性能及破坏规律实验研究[J]. 特种油气藏,2020,27(4):143–148. doi:  10.3969/j.issn.1006-6535.2020.04.022

    FAN Yu, WANG Jiajun, LIU Houbin, et al. Test and analysis of mechanical properties and failure patterns for the deep brittle shale under complex load[J]. Special Oil & Gas Reservoirs, 2020, 27(4): 143–148. doi:  10.3969/j.issn.1006-6535.2020.04.022
    [12] HOLT R M, FJÆR E, STENEBRÅTEN J F, et al. Brittleness of shales: relevance to borehole collapse and hydraulic fracturing[J]. Journal of Petroleum Science and Engineering, 2015, 131: 200–209. doi:  10.1016/j.petrol.2015.04.006
    [13] RICKMAN R, MULLEN M J, PETRE J E, et al. A practical use of shale petrophysics for stimulation design optimization: all shale plays are not clones of the Barnett Shale[R]. SPE 115258, 2008.
    [14] THOMSEN L. On the use of isotropic parameters to understand anisotropic shale behavior[M]//SCHUELKE J. SEG Technical Program Expanded Abstracts 2013. Tulsa: Society of Exploration Geophysicists, 2013: 320-324.
    [15] 艾池,仇德智,张军,等. 页岩力学参数测试及脆性各向异性研究[J]. 断块油气田,2017,24(5):647–651.

    AI Chi, QIU Dezhi, ZHANG Jun, et al. Measurements of mechanical parameters and brittleness anisotropy of shale[J]. Fault-Block Oil & Gas Field, 2017, 24(5): 647–651.
    [16] 夏宏泉,梁景瑞,文晓峰. 基于CQ指标的长庆油田长6—长8段致密油储层划分标准研究[J]. 石油钻探技术,2020,48(3):114–119. doi:  10.11911/syztjs.2020064

    XIA Hongquan, LIANG Jingrui, WEN Xiaofeng. The standard division of tight oil reservoirs in Chang 6-8 Members of Changqing Oilfield based on CQ index[J]. Petroleum Drilling Techniques, 2020, 48(3): 114–119. doi:  10.11911/syztjs.2020064
    [17] 王敏生,光新军,耿黎东. 页岩油高效开发钻井完井关键技术及发展方向[J]. 石油钻探技术,2019,47(5):1–10.

    WANG Minsheng, GUANG Xinjun, GENG Lidong. Key drilling/completion technologies and development trends in the efficient development of shale oil[J]. Petroleum Drilling Techniques, 2019, 47(5): 1–10.
    [18] 张伯虎, 马浩斌, 田小朋, 等.层状页岩力学参数的各向异性研究[J].地下空间与工程学报, 2020, 16(增刊2): 634–638.

    ZHANG Bohu, MA Haobin, TIAN Xiaopeng, et al. Deep layered shale mechanical parameters anisotropy study[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(supplement 2): 634–638.
    [19] 王乔,李虎,刘廷,等. 页岩脆性的表征方法及主控因素[J]. 断块油气田,2020,27(4):458–463.

    WANG Qiao, LI Hu, LIU Ting, et al. Characterization method and main controlling factors of shale brittleness[J]. Fault-Block Oil & Gas Field, 2020, 27(4): 458–463.
    [20] 赖富强,冷寒冰,龚大建,等. 综合矿物组分和弹性力学参数的页岩脆性评价方法[J]. 断块油气田,2019,26(2):168–171, 186.

    LAI Fuqiang, LENG Hanbing, GONG Dajian, et al. Evaluation of shale brittleness based on mineral compositions and elastic mechanics parameters[J]. Fault-Block Oil & Gas Field, 2019, 26(2): 168–171, 186.
    [21] LI L C, TANG C A, Li G, et al. Numerical simulation of 3D hydraulic fracturing based on an improved flow-stress-damage model and a parallel FEM technique[J]. Rock Mechanics and Rock Engineering, 2012, 45: 801–818.
    [22] LI Lianchong, ZHAI Mingyang, ZHANG Liaoyuan, et al. Brittleness evaluation of glutenite based on energy balance and damage evolution[J]. Energies, 2019, 12(18): 3421. doi:  10.3390/en12183421
    [23] RAHIMZADEH KIVI I, AMERI M, MOLLADAVOODI H. Shale brittleness evaluation based on energy balance analysis of stress-strain curves[J]. Journal of Petroleum Science and Engineering, 2018, 167: 1–19. doi:  10.1016/j.petrol.2018.03.061
    [24] 何柏,谢凌志,李凤霞,等. 龙马溪页岩各向异性变形破坏特征及其机理研究[J]. 中国科学(物理学 力学 天文学),2017,47(11):103–114.

    HE Bo, XIE Lingzhi, LI Fengxia, et al. Anisotropic mechanism and characteristics of deformation and failure of Longmaxi Shale[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2017, 47(11): 103–114.
  • [1] 韩来聚, 杨春旭.  济阳坳陷页岩油水平井钻井完井关键技术, 石油钻探技术. doi: 10.11911/syztjs.2021073
    [2] 李帅, 陈军斌, 赵庆磊.  不同加载方式下页岩强度与变形的尺度效应规律试验研究, 石油钻探技术. doi: 10.11911/syztjs.2020075
    [3] 夏宏泉, 刘畅, 李高仁, 蒋婷薇.  基于测井资料的TIV地层水平地应力计算方法, 石油钻探技术. doi: 10.11911/syztjs.2019130
    [4] 路保平, 丁士东, 何龙, 庞伟.  低渗透油气藏高效开发钻完井技术研究主要进展, 石油钻探技术. doi: 10.11911/syztjs.2019027
    [5] 高书阳, 豆宁辉, 林永学, 柴龙, 刘锐.  川渝地区龙马溪组页岩储层水化特征评价方法, 石油钻探技术. doi: 10.11911/syztjs.2018089
    [6] 洪国斌, 陈勉, 卢运虎, 金衍.  川南深层页岩各向异性特征及对破裂压力的影响, 石油钻探技术. doi: 10.11911/syztjs.2018022
    [7] 葛红旗, 金科年, 吴沁轩.  基于测井-地震信息的碳酸盐岩储层裂缝预测方法, 石油钻探技术. doi: 10.11911/syztjs.201705021
    [8] 张立刚, 陶鑫, 闫铁, 金明, 王涛.  利用邻层反演水平层理页岩地应力方法, 石油钻探技术. doi: 10.11911/syztjs.201505005
    [9] 林永学, 高书阳, 曾义金.  龙马溪组页岩强度评价与分析, 石油钻探技术. doi: 10.11911/syztjs.201505004
    [10] 熊健, 刘向君, 梁利喜.  页岩中超临界甲烷等温吸附模型研究, 石油钻探技术. doi: 10.11911/syztjs.201503018
    [11] 曾青冬, 姚军.  基于颗粒流的页岩破裂机理试验研究, 石油钻探技术. doi: 10.11911/syztjs.201501006
    [12] 李龙龙, 吴明录, 姚军, 李阳, 李晓雪.  部分射开直井的产能计算方法, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2014.03.016
    [13] 彭春耀.  层状页岩水力压裂裂缝与岩体弱面的干扰机理研究, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2014.04.006
    [14] 蒋廷学, 卞晓冰, 苏瑗, 刘双莲, 卫然.  页岩可压性指数评价新方法及应用, 石油钻探技术. doi: 10.11911/syztjs.201405003
    [15] 王显光, 李雄, 林永学.  页岩水平井用高性能油基钻井液研究与应用, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2013.02.004
    [16] 杨恒林, 申瑞臣, 付利.  含气页岩组分构成与岩石力学特性, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2013.05.006
    [17] 石秉忠, 夏柏如, 高书阳, 唐文泉, 徐江.  页岩自吸水化控制剂的研制与性能评价, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2012.05.010
    [18] 万绪新.  济阳坳陷新生界地层井壁失稳原因分析及对策, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2012.05.001
    [19] 张新华, 邹筱春, 赵红艳, 李芳, 秦黎明.  利用X荧光元素录井资料评价页岩脆性的新方法, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2012.05.020
    [20] 范乐宾, 刘月田, 顾少华, 顾文欢, 廖恒杰, 敖坤.  油藏各向异性对鱼骨井结构影响的数值模拟研究, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2011.05.015
  • 加载中
图(8) / 表ll (1)
计量
  • 文章访问数:  111
  • HTML全文浏览量:  55
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-05
  • 修回日期:  2021-06-18
  • 网络出版日期:  2021-07-13
  • 刊出日期:  2021-08-25

目录

    /

    返回文章
    返回