东营凹陷陆相页岩油强化缝网改造生产制度优化研究

王增林 鲁明晶 张潦源 李爱山 孟勇 郑彬涛

王增林, 鲁明晶, 张潦源, 李爱山, 孟勇, 郑彬涛. 东营凹陷陆相页岩油强化缝网改造生产制度优化研究[J]. 石油钻探技术, 2021, 49(4): 71-77. doi: 10.11911/syztjs.2021074
引用本文: 王增林, 鲁明晶, 张潦源, 李爱山, 孟勇, 郑彬涛. 东营凹陷陆相页岩油强化缝网改造生产制度优化研究[J]. 石油钻探技术, 2021, 49(4): 71-77. doi: 10.11911/syztjs.2021074
WANG Zenglin, LU Mingjing, ZHANG Liaoyuan, LI Aishan, MENG Yong, ZHENG Bintao. Production System Optimization for Enhanced Fracture Network Stimulation in Continental Shale Oil Reservoirs in the Dongying Sag[J]. Petroleum Drilling Techniques, 2021, 49(4): 71-77. doi: 10.11911/syztjs.2021074
Citation: WANG Zenglin, LU Mingjing, ZHANG Liaoyuan, LI Aishan, MENG Yong, ZHENG Bintao. Production System Optimization for Enhanced Fracture Network Stimulation in Continental Shale Oil Reservoirs in the Dongying Sag[J]. Petroleum Drilling Techniques, 2021, 49(4): 71-77. doi: 10.11911/syztjs.2021074

东营凹陷陆相页岩油强化缝网改造生产制度优化研究

doi: 10.11911/syztjs.2021074
基金项目: 中国石化科技攻关项目“陆相页岩油强化体积改造缝网压裂技术研究”(编号:P20069-6)资助
详细信息
    作者简介:

    王增林(1964—),男,山东昌邑人,1987年毕业于华东石油学院采油工程专业,2003年获浙江大学化学工程专业硕士学位,2004年获中国石油大学(华东)油气田开发工程专业博士学位,正高级工程师,中国石油化工股份有限公司首席专家,主要从事采油工艺技术研究工作。E-mail:wangzenglin.slyt@sinopec.com

  • 中图分类号: TE357

Production System Optimization for Enhanced Fracture Network Stimulation in Continental Shale Oil Reservoirs in the Dongying Sag

  • 摘要: 为最大限度提高东营凹陷陆相页岩油水平井全生命周期累计采油量,开展了强化缝网改造合理生产制度研究。针对页岩油藏复杂的赋存和渗流机理,建立了页岩油藏双重介质两相流压–闷–采全周期流动表征模型,模拟研究了不同生产制度下(即不同闷井时间、自喷期和机采期的压降速度)的产量变化规律,初步探讨了生产制度的优化方法。根据模拟结果,得到了目标井的合理生产制度:闷井时间为60 d;自喷初期压降速度控制在0.06~0.10 MPa/d,自喷中期压降速度控制在0.02~0.04 MPa/d,自喷末期放液生产,快速将油压降至0;机采期控制压降速度保证油井持续生产,防止压力快速下降,地层基质供液不足。研究结果为优化东营凹陷陆相页岩油开发方案提供了理论依据,也为其他地区优化页岩油水平井生产制度提供了借鉴。
  • 图  1  东营凹陷页岩油藏压裂后储层物性及流体分布特征[5]

    Figure  1.  Physical properties and fluid distribution characteristics of the shale oil reservoirs in the Dongying Sag after fracturing [5]

    图  2  页岩油藏双重介质两相流压–闷–采全周期流动表征模型示意

    Figure  2.  Characterization model for the full period of fracturing, shut-in and oil production of two-phase flow in the dual media in shale oil reservoir

    图  3  不同开发方案下页岩油水平井的全周期压力变化特征

    Figure  3.  Pressure variation in the horizontal shale oil wells during full period with different production systems

    图  4  均匀压降方案下的累计产量

    Figure  4.  Cumulative production under the uniform pressure drop scheme

    图  5  梯度压降方案下的累计产量

    Figure  5.  Cumulative production under the gradient pressure drop scheme

    图  6  机采期梯度压降方案下的累计产量

    Figure  6.  Cumulative production under the gradient pressure drop scheme at the pumping stage

    图  7  基于实际油井的生产制度优化示意

    Figure  7.  Optimization of the production system based on actual oil wells

    表  1  自喷期均匀压降优化设计方案

    Table  1.   Optimal design of the uniform pressure drop scheme at the flowing stage

    模拟方案压降速度/(MPa·d–1控制压降时间/d
    10.10194
    20.08242
    30.06323
    40.04485
    50.02970
    下载: 导出CSV

    表  2  自喷期梯度压降方案优化设计结果

    Table  2.   Optimal design results of the gradient pressure drop scheme at the flowing stage

    方案压降速度/(MPa·d–1 控制压降时间/d
    阶段1阶段2阶段3阶段4阶段5 阶段1阶段2阶段3阶段4阶段5
    10.100.080.060.040.02 405067100至油压为0
    20.100.080.060.040.02 102567150至油压为0
    30.100.080.060.040.02 702567150至油压为0
    40.020.040.060.080.10 200 100 67 50至油压为0
    50.020.040.060.080.10 50 667 75至油压为0
    60.020.040.060.080.10 350 150 67 25至油压为0
    下载: 导出CSV
  • [1] SU Yuliang, ZHANG Qi, WANG Wendong. Performance analysis of a composite dual-porosity model in multi-scale fractured shale reservoir[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 1107–1118. doi:  10.1016/j.jngse.2015.07.046
    [2] 苏玉亮,鲁明晶,李萌,等. 页岩油藏多重孔隙介质耦合流动数值模拟[J]. 石油与天然气地质,2019,40(3):645–652. doi:  10.11743/ogg20190319

    SU Yuliang, LU Mingjing, LI Meng, et al. Numerical simulation of shale oil coupled flow in multi-pore media[J]. Oil & Gas Geology, 2019, 40(3): 645–652. doi:  10.11743/ogg20190319
    [3] SONG Wenhui, YAO Jun, LI Yang, et al. Apparent gas permeability in an organic-rich shale reservoir[J]. Fuel, 2016, 181: 973–984. doi:  10.1016/j.fuel.2016.05.011
    [4] WANG Jing, LIU Huiqing, WANG Lei, et al. Apparent permeability for gas transport in nanopores of organic shale reservoirs including multiple effects[J]. International Journal of Coal Geology, 2015, 152: 50–62.
    [5] 苏玉亮,盛广龙,王文东,等. 页岩气藏体积压裂有效改造体积计算方法[J]. 地球科学,2017,42(8):1314–1323.

    SU Yuliang, SHENG Guanglong, WANG Wendong, et al. A new approach to calculate effective stimulated reservoir volume in shale gas reservoir[J]. Earth Science, 2017, 42(8): 1314–1323.
    [6] 崔明月,刘玉章,修乃领,等. 形成复杂缝网体积 (ESRV) 的影响因素分析[J]. 石油钻采工艺,2014,36(2):82–87.

    CUI Mingyue, LIU Yuzhang, XIU Nailing, et al. Analysis of factors affecting the formation of effective stimulated reservoir volume (ESRV)[J]. Oil Drilling & Production Technology, 2014, 36(2): 82–87.
    [7] 刘华敏,李牧,刘乔平,等. 涪陵页岩气田柱塞气举工艺研究与应用[J]. 石油钻探技术,2020,48(3):102–107. doi:  10.11911/syztjs.2020022

    LIU Huamin, LI Mu, LIU Qiaoping, et al. Research and application of plunger gas lift technology in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(3): 102–107. doi:  10.11911/syztjs.2020022
    [8] 赵习森,李立,黄志明,等. 凝析气藏反凝析规律与生产制度关系优化研究[J]. 石油钻探技术,2006,34(6):71–73. doi:  10.3969/j.issn.1001-0890.2006.06.023

    ZHAO Xisen, LI Li, HUANG Zhiming, et al. Optimizing the relationship between condensate properties and production regulations of condensate gas reservoir[J]. Petroleum Drilling Techniques, 2006, 34(6): 71–73. doi:  10.3969/j.issn.1001-0890.2006.06.023
    [9] SHENG Guanglong, JAVADPOUR F, SU Yuliang, et al. A semianalytic solution for temporal pressure and production rate in a shale reservoir with nonuniform distribution of induced fractures[J]. SPE Journal, 2019, 24(4): 1856–1883. doi:  10.2118/195576-PA
    [10] SHENG Guanglong, SU Yuliang, WANG Wendong, et al. Application of fractal geometry in evaluation of effective stimulated reservoir volume in shale gas reservoirs[J]. Fractals, 2017, 25(4): 1740007.
    [11] CAN B, KABIR C S S. Probabilistic production forecasting for unconventional reservoirs with stretched exponential production decline model[J]. SPE Reservoir Evaluation & Engineering, 2012, 15(1): 41–50.
    [12] DUONG A N. Rate-decline analysis for fracture-dominated shale reservoirs[J]. SPE Reservoir Evaluation & Engineering, 2011, 14(3): 377–387.
    [13] CHAUDHARY A S, EHLIG-ECONOMIDES C, WATTENBARGER R. Shale oil production performance from a stimulated reservoir volume[R]. SPE 147596, 2011.
    [14] 邹才能,杨智,朱如凯,等. 中国非常规油气勘探开发与理论技术进展[J]. 地质学报,2015,89(6):979–1007. doi:  10.3969/j.issn.0001-5717.2015.06.001

    ZOU Caineng, YANG Zhi, ZHU Rukai, et al. Progress in China’s unconventional oil & gas exploration and development and theoretical technologies[J]. Acta Geologica Sinica, 2015, 89(6): 979–1007. doi:  10.3969/j.issn.0001-5717.2015.06.001
    [15] 陈志明,陈昊枢,廖新维,等. 基于试井分析的新疆吉木萨尔页岩油藏人工缝网参数反演研究[J]. 石油科学通报,2019,4(3):263–272.

    CHEN Zhiming, CHEN Haoshu, LIAO Xinwei, et al. A well-test based study for parameter estimations of artificial fracture networks in the Jimusar shale reservoir in Xinjiang[J]. Petroleum Science Bulletin, 2019, 4(3): 263–272.
    [16] 许锋,姚约东,吴承美,等. 温度对吉木萨尔致密油藏渗吸效率的影响研究[J]. 石油钻探技术,2020,48(5):100–104. doi:  10.11911/syztjs.2020114

    XU Feng, YAO Yuedong, WU Chengmei, et al. Effect of temperature on the imbibition efficiency of the Jimusar tight oil reservoir[J]. Petroleum Drilling Techniques, 2020, 48(5): 100–104. doi:  10.11911/syztjs.2020114
    [17] 庞彦明,王永卓,王瑞,等. 松辽盆地古龙页岩油水平井试采分析及产能预测[J]. 大庆石油地质与开发,2020,39(3):137–146.

    PANG Yanming, WANG Yongzhuo, WANG Rui, et al. Production test analysis and productivity prediction of horizontal wells in Gulong shale oil reservoirs, Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(3): 137–146.
    [18] 董岩,徐东升,钱根葆,等. 吉木萨尔页岩油“甜点”预测方法[J]. 特种油气藏,2020,27(3):54–59. doi:  10.3969/j.issn.1006-6535.2020.03.009

    DONG Yan, XU Dongsheng, QIAN Genbao. Shale oil“sweet-spot”prediction in Jimusar Sag[J]. Specail Oil & Gas Reservoirs, 2020, 27(3): 54–59. doi:  10.3969/j.issn.1006-6535.2020.03.009
    [19] 付金华,牛小兵,淡卫东,等. 鄂尔多斯盆地中生界延长组长7段页岩油地质特征及勘探开发进展[J]. 中国石油勘探,2019,24(5):601–614. doi:  10.3969/j.issn.1672-7703.2019.05.007

    FU Jinhua, NIU Xiaobing, DAN Weidong, et al. The geological characteristics and the progress on exploration and development of shale oil in Chang 7 Member of Mesozoic Yanchang Formation, Ordos Basin[J]. China Petroleum Exploration, 2019, 24(5): 601–614. doi:  10.3969/j.issn.1672-7703.2019.05.007
    [20] 杨灿,王鹏,饶开波,等. 大港油田页岩油水平井钻井关键技术[J]. 石油钻探技术,2020,48(2):34–41. doi:  10.11911/syztjs.2020036

    YANG Can, WANG Peng, RAO Kaibo, et al. Key technologies for drilling horizontal shale oil wells in the Dagang Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 34–41. doi:  10.11911/syztjs.2020036
    [21] 赵贤正,周立宏,赵敏,等. 陆相页岩油工业化开发突破与实践:以渤海湾盆地沧东凹陷孔二段为例[J]. 中国石油勘探,2019,24(5):589–600. doi:  10.3969/j.issn.1672-7703.2019.05.006

    ZHAO Xianzheng, ZHOU Lihong, ZHAO Min, et al. Breakthrough and practice of industrial development on continental shale oil: a case study on Kong-2 Member in Cangdong Sag, Bohai Bay Basin[J]. China Petroleum Exploration, 2019, 24(5): 589–600. doi:  10.3969/j.issn.1672-7703.2019.05.006
    [22] 柳伟荣,倪华峰,王学枫,等. 长庆油田陇东地区页岩油超长水平段水平井钻井技术[J]. 石油钻探技术,2020,48(1):9–14. doi:  10.11911/syztjs.2020029

    LIU Weirong, NI Huafeng, WANG Xuefeng, et al. Shale oil horizontal drilling technology with super-long horizontal laterals in the Longdong Region of the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(1): 9–14. doi:  10.11911/syztjs.2020029
    [23] 石建刚,席传明,熊超,等. 吉木萨尔页岩油藏超长水平井水平段长度界限研究[J]. 特种油气藏,2020,27(4):136–142. doi:  10.3969/j.issn.1006-6535.2020.04.021

    SHI Jiangang, XI Chuanming, XIONG Chao, et al. Lateral length limit of ultra-long horizontal well in Jimsar shale oil reservoir[J]. Special Oil & Gas Reserviors, 2020, 27(4): 136–142. doi:  10.3969/j.issn.1006-6535.2020.04.021
    [24] OZKAN S, DUMAN R. Economic evaluation of Marcellus and Utica under the effects of dynamic market and development conditions[R]. SPE 177321, 2015.
    [25] ZHANG Z, CLARKSON C, WILLIAMS-KOVACS J D, et al. Rigorous estimation of the initial conditions of flowback using a coupled hydraulic-fracture/dynamic-drainage-area leakoff model constrained by laboratory geomechanical data[J]. SPE Journal, 2020, 25(6): 3051–3078. doi:  10.2118/201095-PA
  • [1] 李永康, 贾贻勇, 张广中, 王宏万, 崔玉海.  胜利油田注水井分层酸化管柱研究现状及发展建议, 石油钻探技术. doi: 10.11911/syztjs.2021030
    [2] 蒋廷学, 王海涛.  中国石化页岩油水平井分段压裂技术现状与发展建议, 石油钻探技术. doi: 10.11911/syztjs.2021071
    [3] 王志战, 杜焕福, 李香美, 牛强.  陆相页岩油录井重点发展领域与技术体系构建, 石油钻探技术. doi: 10.11911/syztjs.2021093
    [4] 赵波, 陈二丁.  胜利油田页岩油水平井樊页平1井钻井技术, 石油钻探技术. doi: 10.11911/syztjs.2021078
    [5] 孟勇, 贾庆升, 张潦源, 郑彬涛, 邓旭.  东营凹陷页岩油储层层间干扰及裂缝扩展规律研究, 石油钻探技术. doi: 10.11911/syztjs.2021094
    [6] 李永康, 张紫檀, 张卫卫, 王鹏, 刘晋伟, 郭慧.  胜利油田长效扩张式分层注水技术, 石油钻探技术. doi: 10.11911/syztjs.2020092
    [7] 韩来聚, 李公让.  胜利油田钻井环保技术进展及发展方向, 石油钻探技术. doi: 10.11911/syztjs.2019057
    [8] 张雷, 杜玮暄, 肖萍, 高综启, 孙衍东, 周娜.  胜利油田蒸汽驱生产井高效举升配套技术, 石油钻探技术. doi: 10.11911/syztjs.2018096
    [9] 韩来聚.  胜利油田钻井完井技术新进展及发展建议, 石油钻探技术. doi: 10.11911/syztjs.201701001
    [10] 翁定为, 付海峰, 卢拥军, 郑力会, 马建军.  储层改造体积预测模型的研究与应用, 石油钻探技术. doi: 10.11911/syztjs.201601018
    [11] 薄其众, 戴涛, 杨勇, 鞠斌山.  胜利油田樊142块特低渗透油藏CO2驱油储层压力动态变化研究, 石油钻探技术. doi: 10.11911/syztjs.201606016
    [12] 乔军, 于雷, 张守文, 刘宝锋, 张志财, 杨景利.  胜利油田渤南洼陷浊积岩油藏长水平段水平井钻井液技术, 石油钻探技术. doi: 10.11911/syztjs.201501010
    [13] 廖东良, 肖立志, 张元春.  基于矿物组分与断裂韧度的页岩地层脆性指数评价模型, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2014.04.007
    [14] 马明新, 杨海波, 徐鑫.  液压扶正器在胜利油田非常规油井固井中的应用, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2014.01.014
    [15] 徐鑫.  水平井控流筛管完井技术研究及应用, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2014.03.014
    [16] 隋梅.  胜利油田深探井固井技术难点与对策, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2013.03.014
    [17] 陈霆, 孙志刚.  不同化学驱油体系微观驱油机理评价方法, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2013.02.017
    [18] 张书庆, 马毅超, 高广军, 任中启, 刘全江.  胜利油田采试-平1井钻井技术, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2013.04.026
    [19] 刘欢乐, 吴则鑫, 张博, 周明, 周雅杰.  油田生产制度改变时产液量变化规律预测, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2013.05.020
    [20] 崔海林, 陈建隆, 牛洪波, 张佃宾, 刘晓兰.  胜利油田首口小井眼长水平段水平井钻井技术, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2011.05.003
  • 加载中
图(7) / 表ll (2)
计量
  • 文章访问数:  137
  • HTML全文浏览量:  72
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-29
  • 网络出版日期:  2021-07-19
  • 刊出日期:  2021-08-25

目录

    /

    返回文章
    返回