井下同轴闭式地热系统循环工质综合评价优选

于超 张逸群 宋先知 王高升 黄浩宸

于超, 张逸群, 宋先知, 王高升, 黄浩宸. 井下同轴闭式地热系统循环工质综合评价优选[J]. 石油钻探技术, 2021, 49(5): 101-107. doi: 10.11911/syztjs.2021066
引用本文: 于超, 张逸群, 宋先知, 王高升, 黄浩宸. 井下同轴闭式地热系统循环工质综合评价优选[J]. 石油钻探技术, 2021, 49(5): 101-107. doi: 10.11911/syztjs.2021066
YU Chao, ZHANG Yiqun, SONG Xianzhi, WANG Gaosheng, HUANG Haochen. Comprehensive Evaluation and Optimization of Circulating Working Fluids inthe Coaxial Borehole Heat Exchanger Closed-Loop Geothermal System[J]. Petroleum Drilling Techniques, 2021, 49(5): 101-107. doi: 10.11911/syztjs.2021066
Citation: YU Chao, ZHANG Yiqun, SONG Xianzhi, WANG Gaosheng, HUANG Haochen. Comprehensive Evaluation and Optimization of Circulating Working Fluids inthe Coaxial Borehole Heat Exchanger Closed-Loop Geothermal System[J]. Petroleum Drilling Techniques, 2021, 49(5): 101-107. doi: 10.11911/syztjs.2021066

井下同轴闭式地热系统循环工质综合评价优选

doi: 10.11911/syztjs.2021066
基金项目: 国家重点研发计划项目“雄安新区深层地热资源探测评价技术示范”(编号:2018YFC0604304)资助
详细信息
    作者简介:

    于超(1994—),男,山东诸城人,2017年毕业于中国石油大学(北京)石油工程专业,在读博士研究生,主要从事热储渗流-传热、井筒流动-传热和热储物性动态反演等方面的研究。E-mail:yuchao_1011@163.com

  • 中图分类号: P314

Comprehensive Evaluation and Optimization of Circulating Working Fluids inthe Coaxial Borehole Heat Exchanger Closed-Loop Geothermal System

  • 摘要: 井下同轴闭式地热系统中,不同循环工质对系统换热性能影响不明晰,仅考虑单一因素无法对换热性能进行全面评价。为此,首先利用COMSOL软件,建立了井下同轴闭式地热系统三维流动传热数值模型,利用现场数据进行了验证;然后选取出口温度、换热功率、循环压耗及性能系数(COP)等4个评价指标,采用层次分析法确定评价指标的权重;最后基于模糊综合评判法,建立了综合评价模型,对9种循环工质的换热性能进行了综合评价。根据综合评价值,将循环工质分为3级,其中CO2综合评价值最高,表明CO2的综合换热性能最好,是最优循环工质。研究表明,建立的综合评价模型可以全面评价循环工质的换热性能,采用CO2作为循环工质,可以大幅提高井下同轴闭式地热系统的换热效率。
  • 图  1  井下同轴闭式地热系统的组成及换热过程

    Figure  1.  Composition and heat exchange process of the CBHE closed-loop geothermal system

    图  2  HGP-A井的井身结构

    Figure  2.  Casing program of Well HGP-A

    图  3  模拟结果与夏威夷HGP-A井生产数据的对比[23]

    Figure  3.  Comparison between simulation results and production data of Well HGP-A[23]

    图  4  不同循环工质的换热性能指标计算结果

    Figure  4.  Calculation results of the indexes for heat exchange performance of different circulating working fluids

    表  1  指标判断矩阵

    Table  1.   Index judgment matrix

    指标出口温度(B1)换热功率(B2)循环压耗(B3)性能系数(B4)
    出口温度(B1)11/81/21/4
    取热功率(B2)8142
    循环压耗(B3)21/411/2
    性能系数(B4)41/221
    下载: 导出CSV

    表  2  循环工质基本性能参数

    Table  2.   Basic parameters of the circulating working fluids

    工质化学名称临界压力/MPa临界温度/℃
    22.12 374.15
    CO2二氧化碳7.38 31.20
    戊烷正戊烷3.37196.40
    R134a1,1,1,2-四氟乙烷4.06101.06
    R152a1,1-二氟乙烷4.52113.26
    R227ea1,1,1,2,3,3,3-七氟丙烷2.93101.65
    R245fa1,1,1,3,3-五氟丙烷3.65154.01
    1234ze1,3,3,3-四氟丙烯3.64109.37
    R600a异丁烷3.66134.98
    下载: 导出CSV

    表  3  不同循环工质的综合评价值及等级

    Table  3.   Comprehensive evaluation scores and grades of different working fluids

    循环工质综合评价值等级
    CO295.12
    R600a81.04较优
    戊烷77.54
    75.95
    R152a73.47
    R134a68.83一般
    R1234ze67.87
    R227ea64.90
    R245fa64.75
    下载: 导出CSV
  • [1] 廖忠礼,张予杰,陈文彬,等. 地热资源的特点与可持续开发利用[J]. 中国矿业,2006,15(10):8–11.

    LIAO Zhongli, ZHANG Yujie, CHEN Wenbin, et al. Available persist exploitation and utilization of geothermal resources[J]. China Mining Magazine, 2006, 15(10): 8–11.
    [2] SONG Xianzhi, ZHENG Rui, LI Gensheng, et al. Heat extraction performance of a downhole coaxial heat exchanger geothermal system by considering fluid flow in the reservoir[J]. Geothermics, 2018, 76: 190–200. doi:  10.1016/j.geothermics.2018.07.012
    [3] 宋先知,李嘉成,石宇,等. 多分支井地热系统注采性能室内实验研究[J]. 石油钻探技术,2021,49(1):81–87.

    SONG Xianzhi, LI Jiacheng, SHI Yu, et al. Laboratory-scale experimental study on the injection-production performance of a multilateral-well enhanced geothermal system[J]. Petroleum Drilling Techniques, 2021, 49(1): 81–87.
    [4] HORNE R N. Design considerations of a down-hole coaxial geothermal heat exchanger[C]. Transactions of Geothermal Resources Council, 1980, 4: 569-572.
    [5] MORITA K, OSAMUM, KUSUNOKI K. Down-hole coaxial heat exchanger using insulated inner pipe for maximum heat extrac-tion[C]. Transactions of Geothermal Resources Council, 1985, 9: 45–50.
    [6] MORITA K, BOLLMEIER W S, MIZOGAMI H. Analysis of the results from the downhole coaxial heat exchanger (DCHE) experiment in Hawaii[C]. Transactions of Geothermal Resources Council, 1992: 17-23.
    [7] 赵春虎,尚宏波,靳德武,等. 深层垂直井同轴换热能力数值模拟分析[J]. 煤田地质与勘探,2020,48(5):174–181.

    ZHAO Chunhu, SHANG Hongbo, JIN Dewu, et al. Numerical simulation of coaxial heat transfer capacity of deep vertical wells[J]. Coal Geology & Exploration, 2020, 48(5): 174–181.
    [8] 冯波,刘鑫,张国斌,等. 单井闭循环地热系统可持续开发潜力数值模拟[J]. 天然气工业,2020,40(9):146–155.

    FENG Bo, LIU Xin, ZHANG Guobin, et al. Numerical simulation on the sustainable development potential of a single-well closed-cycle geothermal system[J]. Natural Gas Industry, 2020, 40(9): 146–155.
    [9] 卜宪标,冉运敏,李华山,等. 既有地热单井采暖系统换热量的增强方法[J]. 太阳能学报,2020,41(10):369–374.

    BU Xianbiao, RAN Yunmin, LI Huashan, et al. Enhancing heat transfer methods of existing geothermal single well heating system[J]. Acta Energiae Solaris Sinica, 2020, 41(10): 369–374.
    [10] 冉运敏,卜宪标. 保温对地热单井换热性能的影响分析[J]. 化工学报,2019,70(11):4191–4198.

    RAN Yunmin, BU Xianbiao. Influence analysis of insulation on performance of single well geothermal heating system[J]. CIESC Journal, 2019, 70(11): 4191–4198.
    [11] DAI Chuanshan, LI Jiashu, SHI Yu, et al. An experiment on heat extraction from a deep geothermal well using a downhole coaxial open loop design[J]. Applied Energy, 2019, 252: 113447. doi:  10.1016/j.apenergy.2019.113447
    [12] HUANG Yibin, ZHANG Yanjun, XIE Yangyang, et al. Field test and numerical investigation on deep coaxial borehole heat exchanger based on distributed optical fiber temperature sensor[J]. Energy, 2020, 210: 118643. doi:  10.1016/j.energy.2020.118643
    [13] 赵振峰,白晓虎,陈强,等. 基于模糊集合理论的体积压裂水平井产量预测方法[J]. 石油钻采工艺,2019,41(4):521–528.

    ZHAO Zhenfeng, BAI Xiaohu, CHEN Qiang, et al. Production prediction method of volume fracturing horizontal wells based on fuzzy set theory[J]. Oil Drilling & Production Technology, 2019, 41(4): 521–528.
    [14] 朱晓东,王杰. 基于分层模糊系统的石油钻井参数预测模型[J]. 石油学报,2010,31(5):838–842, 848.

    ZHU Xiaodong, WANG Jie. A predictive model for oil-drilling parameters based on the hierarchical fuzzy system[J]. Acta Petrolei Sinica, 2010, 31(5): 838–842, 848.
    [15] 局培,翟应虎. 应用改进模糊综合评判法优选PDC钻头[J]. 石油钻探技术,2013,41(1):108–112.

    JU Pei, ZHAI Yinghu. Selection of PDC bit by using improved fuzzy comprehensive evaluation method[J]. Petroleum Drilling Techniques, 2013, 41(1): 108–112.
    [16] 毕雪亮,张楠,陈勋,等. 基于模糊综合评判法的欠平衡钻井方式优选[J]. 断块油气田,2015,22(1):116–119.

    BI Xueliang, ZHANG Nan, CHEN Xun, et al. Optimization of underbalanced drilling based on fuzzy comprehensive evaluation methods[J]. Fault-Block Oil & Gas Field, 2015, 22(1): 116–119.
    [17] 赵春森,王光杰,卢亚涛,等. 利用模糊综合评判法评价水井分层注水效果[J]. 当代化工,2016,45(3):561–563.

    ZHAO Chunsen, WANG Guangjie, LU Yatao, et al. Effect evaluation of the separate layer water injection by using fuzzy comprehensive evaluation method[J]. Contemporary Chemical Industry, 2016, 45(3): 561–563.
    [18] 朱兆群,林承焰,张苏杰,等. 改进的模糊-灰色综合评判方法在储层定量评价中的应用:以苏里格气田苏X井区盒8下亚段低渗透气藏为例[J]. 石油与天然气地质,2017,38(1):197–208.

    ZHU Zhaoqun, LIN Chengyan, ZHANG Sujie, et al. Application of improved fuzzy-grey comprehensive evaluation method to quantitative reservoir evaluation: a case study of the low-permeability gas reservoirs of the lower part of 8th member of the Shihezi Formation in Su X Block of Sulige Gasfield[J]. Oil & Gas Geology, 2017, 38(1): 197–208.
    [19] 方舟,张彩旗,罗义科,等. 基于模糊数学的海上稠油热采效果评价研究及应用[J]. 特种油气藏,2018,25 (1):129–133.

    FANG Zhou, ZHANG Caiqi, LUO Yike, et al. Thermal recovery performance evaluation and application in off-shore heavy-oil reservoir based on fuzzy mathematics[J]. Special Oil & Gas Reservoirs, 2018, 25 (1): 129–133.
    [20] 张伟,孙江,曲占庆,等. 高温地热开采热流固耦合模型及综合评价方法[J]. 地球物理学进展,2019,34(2):668–675. doi:  10.6038/pg2019CC0445

    ZHANG Wei, SUN Jiang, QU Zhanqing, et al. Thermo-hydro-mechanical coupling model and comprehensive evaluation method of high temperature geothermal extraction[J]. Progress in Geophysics, 2019, 34(2): 668–675. doi:  10.6038/pg2019CC0445
    [21] CHURCHILL S W. Friction factor equation spans all fluid-flow regimes[J]. Chemical Engineering, 1977, 84(24): 91–92.
    [22] GNIELINSKI V. New equations for heat and mass transfer in the turbulent flow in pipes and channels[J]. International Chemical Engineering, 1976, 16(2): 359–368.
    [23] MORITA K, BOLLMEIER W S, MIZOGAMI H. An experiment to prove the concept of the downhole coaxial heat exchanger (DCHE) in Hawaii[C]. Transactions of Geothermal Resources Council, 1992, 16: 9–16.
  • [1] 咸玉席, 陈超峰, 封猛, 郝有志.  页岩油藏裂缝网络多相渗流数值模拟研究, 石油钻探技术. doi: 10.11911/syztjs.2021090
    [2] 欧阳伟平, 张冕, 孙虎, 张云逸, 池晓明.  页岩油水平井压裂渗吸驱油数值模拟研究, 石油钻探技术. doi: 10.11911/syztjs.2021083
    [3] 张夷非, 魏勇, 余厚全, 陈强, 刘国权, 张学.  恒温差热式流量计影响因素模拟与试验研究, 石油钻探技术. doi: 10.11911/syztjs.2021023
    [4] 药晓江, 卢华涛, 尚捷, 王清华, 李洋.  随钻测井仪流道转换器优化设计与数值分析, 石油钻探技术. doi: 10.11911/syztjs.2021069
    [5] 张逸群, 于超, 程光明, 宋先知, 赵克贤.  聚能筑巢堵漏用金属割缝管爆炸成形数值模拟及试验研究, 石油钻探技术. doi: 10.11911/syztjs.2020107
    [6] 张光伟, 高嗣土, 乔阳, 田帆.  指向式旋转导向系统内外环转速对PDC钻头破岩效率的影响, 石油钻探技术. doi: 10.11911/syztjs.2019096
    [7] 冯进, 魏俊.  柱阀结构参数对涡轮式压力脉冲发生器性能的影响, 石油钻探技术. doi: 10.11911/syztjs.201703011
    [8] 邵冬冬, 李伟, 蒋小平, 刘亚, 刘思晗.  叶轮式井底盘阀脉冲射流钻井工具性能分析与优化, 石油钻探技术. doi: 10.11911/syztjs.201702011
    [9] 杨英涛, 温庆志, 段晓飞, 王淑婷, 王峰.  通道压裂裂缝导流能力数值模拟研究, 石油钻探技术. doi: 10.11911/syztjs.201606018
    [10] 李玉梅, 吕炜, 宋杰, 李军, 杨宏伟, 于丽维.  层理性页岩气储层复杂网络裂缝数值模拟研究, 石油钻探技术. doi: 10.11911/syztjs.201604019
    [11] 张宏方.  碳酸盐岩油藏缝洞单元离散数值模拟方法研究, 石油钻探技术. doi: 10.11911/syztjs.201502013
    [12] 李皋, 肖贵林, 李小林, 李诚.  气体钻水平井岩屑运移数值模拟研究, 石油钻探技术. doi: 10.11911/syztjs.201504012
    [13] 陈修平, 邹德永, 李东杰, 娄尔标.  PDC钻头防泥包性能数值模拟研究, 石油钻探技术. doi: 10.11911/syztjs.201506020
    [14] 宋先知, 李根生, 王梦抒, 易灿, 苏新亮.  连续油管钻水平井岩屑运移规律数值模拟, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2014.02.006
    [15] 聂向荣, 杨胜来.  高凝油油藏冷伤害特征数值模拟, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2014.01.020
    [16] 魏辽, 韩峰, 陈涛, 郭朝辉, 朱玉杰.  套管固井滑套冲蚀磨损模拟分析与试验研究, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2014.03.020
    [17] 徐鹏, 刘新云, 石李保.  地应力对爆炸压裂影响规律的数值模拟研究, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2013.01.013
    [18] 李洪乾.  螺旋套管扶正器诱导环空流场的数值模拟, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2012.02.005
    [19] 李春英, 吴晓东.  韵律层内剩余油分布的数值模拟研究, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2012.01.018
    [20] 孙海成, 汤达祯, 蒋廷学.  页岩气储层裂缝系统影响产量的数值模拟研究, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2011.05.014
  • 加载中
图(4) / 表ll (3)
计量
  • 文章访问数:  108
  • HTML全文浏览量:  63
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-12
  • 修回日期:  2021-07-21
  • 网络出版日期:  2021-05-18
  • 刊出日期:  2021-10-18

目录

    /

    返回文章
    返回