缝洞型碳酸盐岩油藏注氮气致稠机理研究

刘中云 李兆敏 赵海洋

刘中云, 李兆敏, 赵海洋. 缝洞型碳酸盐岩油藏注氮气致稠机理研究[J]. 石油钻探技术, 2021, 49(5): 75-80. doi: 10.11911/syztjs.2021015
引用本文: 刘中云, 李兆敏, 赵海洋. 缝洞型碳酸盐岩油藏注氮气致稠机理研究[J]. 石油钻探技术, 2021, 49(5): 75-80. doi: 10.11911/syztjs.2021015
LIU Zhongyun, LI Zhaomin, ZHAO Haiyang. Research on Crude Oil Thickening Mechanisms during Nitrogen Injection in Fracture-Cavity Carbonate Reservoirs[J]. Petroleum Drilling Techniques, 2021, 49(5): 75-80. doi: 10.11911/syztjs.2021015
Citation: LIU Zhongyun, LI Zhaomin, ZHAO Haiyang. Research on Crude Oil Thickening Mechanisms during Nitrogen Injection in Fracture-Cavity Carbonate Reservoirs[J]. Petroleum Drilling Techniques, 2021, 49(5): 75-80. doi: 10.11911/syztjs.2021015

缝洞型碳酸盐岩油藏注氮气致稠机理研究

doi: 10.11911/syztjs.2021015
基金项目: 国家科技重大专项“塔里木盆地碳酸盐岩油气田提高采收率关键技术示范工程”(编号:2016ZX05053)资助
详细信息
    作者简介:

    刘中云(1963—),男,湖北钟祥人,1983年毕业于江汉石油学院采油工程专业,2003年获中国科学院广州地球化学研究所地球化学专业博士学位,教授级高级工程师,主要从事油气田开发工程技术研究与管理工作。E-mail:liuzhongyun@pipechina.com.cn

  • 中图分类号: TE344,TE357.7

Research on Crude Oil Thickening Mechanisms during Nitrogen Injection in Fracture-Cavity Carbonate Reservoirs

  • 摘要: 为了明确缝洞型碳酸盐岩油藏注氮气原油变稠的机理并制定相应的开发对策,提高注氮气的采收率,开展了缝洞型油藏注氮气致稠机理研究。该研究通过注氮气模拟试验,分析了氮气抽提作用、氮气含氧量和伴注水对原油黏度的影响。结果表明,氮气含氧是引起原油黏度增大的主导因素,含氧量为1%时,仅需2 d多即可将氧气耗尽,黏度达到18 000 mPa·s,为初始黏度的6倍;含氧量为5%时,在7 d多时间内黏度持续升高达到1 122 000 mPa·s,为初始黏度的366倍。乳化含水和抽提对原油黏度的影响相当,黏度升高1~3倍。研究表明,提高注入氮气的纯度是防止塔河油田缝洞型油藏注氮气致稠的最有效方法,研究结果为解决缝洞型碳酸盐岩油藏注氮气原油致稠问题提供了理论依据。
  • 图  1  注氮气超临界提抽模拟试验装置

    Figure  1.  Simulation device for supercritical extraction of injected nitrogen

    图  2  高温氧化试验流程

    Figure  2.  Procedures for a high-temperature oxidization experiment

    图  3  油样E在氧气含量1%下的组分变化情况

    Figure  3.  Change of components in Sample E with an oxygen content of 1%

    图  4  油样E在氧气含量5%下的组分变化情况

    Figure  4.  Change of components in Sample E with an oxygen content of 5%

    表  1  试验用原油初始黏度

    Table  1.   Initial viscosity of crude oil in the experiment

    油样组分含量,%重均相对
    分子质量
    黏度/(mPa·s)
    饱和芳香胶质沥青质50 ℃130 ℃
    油样A27.3532.2824.1016.281 0814 57068.6
    油样B29.1331.1827.7511.941 0813 54062.5
    油样C30.8131.2217.3820.591 064 37020.4
    油样D32.3131.1318.5818.011 087 96137.1
    下载: 导出CSV

    表  2  不同油样对抽提效果的影响

    Table  2.   Influence of different oil samples on extraction

    油样质量/
    g
    注入速度/
    (L·min–1
    注入量/
    L
    抽提量/
    g
    质量占比,%
    油样A72.702.96221.740.120.17
    油样B75.703.00230.880.120.16
    油样C109.10 2.97332.760.120.11
    油样D83.192.99253.730.070.08
    下载: 导出CSV

    表  3  氮气注入倍数对油样A抽提效果的影响

    Table  3.   Influence of nitrogen injection multiples on extraction in Sample A

    油样质
    量/g
    注入速度/
    (L·min–1
    注入倍数抽提量/
    g
    质量
    比,%
    50 ℃黏度/
    (mPa·s)
    增黏
    倍数
    72.952.90 30.050.075 0261.10
    99.632.98 50.110.115 5191.21
    72.702.96100.120.176 7011.47
    63.352.97300.270.4314 933 3.27
    下载: 导出CSV

    表  4  注入速度对原油抽提效果的影响

    Table  4.   Influence of nitrogen injection rates on extraction

    油样质量/g注入速度/(L·min−1注入量/L抽提量/g
    63.352.97579.650.27
    63.353.49579.650.25
    63.354.07579.650.24
    下载: 导出CSV

    表  5  油样E在不同含氧量氮气中氧化不同时间后的黏度

    Table  5.   Viscosity of Sample E after oxidization for different time in nitrogen with different oxygen contents

    含氧量,%油样E氧化不同时间后的黏度/(mPa·s)
    6 h12 h30 h54 h78 h126 h174 h
    110 02012 60015 48017 75018 20018 30018 000
    512 50035 33062 00098 400228 000 453 000 1 122 000
    15 55 630384 000 9 360 000 32 750 000
    下载: 导出CSV

    表  6  油样E经不同含氧量氮气氧化前后C,H 和 N 元素含量的变化

    Table  6.   Change of contents of Element C, H and N in Sample E before and after oxidization by nitrogen with different oxygen contents

    油样H,%C,%N,%S,%O,%
    油样E11.9585.130.511.800.61
    含氧量1%氮气抽提3次11.8084.990.511.840.86
    含氧量1%氮气抽提7次11.7884.940.511.860.91
    含氧量5%氮气抽提3次11.6684.710.511.891.23
    含氧量5%氮气抽提7次11.4984.360.491.861.85
    下载: 导出CSV

    表  7  TK1原油乳化含水样品黏度

    Table  7.   Viscosity of emulsified water-bearing samples from Well TK1

    原油乳化含水率,%真实含水率,%50 ℃原油黏度/(mPa·s)
    原始样 5.51 385
    10 9.82 575
    2014.351 420
    3027.414 337
    4544.3822 590
    6056.06273 000
    7062.55449 000
    7567.34212 000
    下载: 导出CSV

    表  8  TK2原油乳化含水样品黏度

    Table  8.   Viscosity of emulsified water-bearing samples from Well TK2

    原油乳化含水率,%真实含水率,%50 ℃原油黏度/(mPa·s)
    原始样 4.65 1 880
    10 9.16 2 480
    2020.8 7 500
    30 33.4513 200
    4040.122 800
    5553.044 000
    6563.5109 000
    7067.278 800
    下载: 导出CSV
  • [1] 杨景斌,侯吉瑞. 缝洞型碳酸盐岩油藏岩溶储集体注氮气提高采收率实验[J]. 油气地质与采收率,2019,26(6):107–114.

    YANG Jingbin, HOU Jirui. Experiments on enhancing oil recovery by nitrogen injection in fracture-vuggy carbonate reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(6): 107–114.
    [2] 关华,郭平,赵春兰,等. 渤海湾盆地永安油田永66区块氮气驱油机理[J]. 岩性油气藏,2020,32(2):149–160.

    GUAN Hua, GUO Ping, ZHAO Chunlan, et al. Nitrogen flooding mechanism in Yong66 Block of Yong’an Oilfield, Bohai Bay Basin[J]. Lithologic Reservoirs, 2020, 32(2): 149–160.
    [3] 姜海涛. 救援井与事故井连通技术研究[D]. 北京: 中国石油大学(北京), 2014.

    JIANG Haitao. Study on the Technology of Intercommunicating the relief well and the accident well[D].Beijing: China University of Petroleum(Beijing), 2014
    [4] WANG Leizheng, YU Wei. Gas huff and puff process in Eagle Ford Shale: recovery mechanism study and optimization[R]. SPE 195185, 2019.
    [5] 刘中云,赵海洋,王建海,等. 塔河油田溶洞型碳酸盐岩油藏注入氮气垂向分异速度及横向波及范围研究[J]. 石油钻探技术,2019,47(4):75–82. doi:  10.11911/syztjs.2019092

    LIU Zhongyun, ZHAO Haiyang, WANG Jianhai, et al. Study on vertical differential velocity and transverse scope of nitrogen injection in carbonate reservoirs with fractures and vugs in the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2019, 47(4): 75–82. doi:  10.11911/syztjs.2019092
    [6] 刘笑春,黎晓茸,杨飞涛,等. 长庆姬塬油田黄3区CO2驱对采出原油物性影响[J]. 油气藏评价与开发,2019,9(3):36–40. doi:  10.3969/j.issn.2095-1426.2019.03.007

    LIU Xiaochun, LI Xiaoxiang, YANG Feitao, et al. Effect of CO2 flooding on physical properties of produced crude oil in Huang 3 Block of Jiyuan Oilfield, Changqing[J]. Oil and Gas Reservoir Evaluation and Development, 2019, 9(3): 36–40. doi:  10.3969/j.issn.2095-1426.2019.03.007
    [7] YU Wei, LASHGARI H R, SEPEHRNOORI K. Simulation study of CO2 huff-n-puff process in Bakken tight oil reservoirs[R]. SPE 169575, 2014.
    [8] 唐人选,梁珀,吴公益,等. 苏北复杂断块油藏二氧化碳驱油效果影响因素分析及认识[J]. 石油钻探技术,2020,48(1):98–103. doi:  10.11911/syztjs.2019125

    TANG Renxuan, LIANG Po, WU Gongyi, et al. Analyzing and understanding the influencing factors of CO2 flooding in the Subei complex fault block reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(1): 98–103. doi:  10.11911/syztjs.2019125
    [9] 侯剑锋,刘鹏刚,曹廷义. 轻质原油注空气热特征及氧化动力学研究[J]. 油气藏评价与开发,2020,10(4):113–118.

    HOU Jianfeng, LIU Penggang, CAO Tingyi. Study on thermal characteristics and oxidation kinetics of light crude oil by air injec-tion[J]. Oil and Gas Reservoir Evaluation and Development, 2020, 10(4): 113–118.
    [10] 龙安林,张茂林,宋惠馨,等. 减氧空气驱低温氧化反应机理研究:以尕斯库勒油田E31油藏为例[J]. 能源与环保,2020,42(4):105–109.

    LONG Anlin, ZHANG Maolin, SONG Huixin, et al. Study on mechanism of low temperature oxidation reaction of deoxidized air drive: taking E31 reservoir of Gaskule Oilfield as an example[J]. Energy and Environmental Protection, 2020, 42(4): 105–109.
    [11] 廖广志,王红庄,王正茂,等. 注空气全温度域原油氧化反应特征及开发方式[J]. 石油勘探与开发,2020,47(2):334–340.

    LIAO Guangzhi, WANG Hongzhuang, WANG Zhengmao, et al. Characteristics and development methods of crude oil oxidation reaction in the whole temperature range of air injection[J]. Petroleum Exploration and Development, 2020, 47(2): 334–340.
    [12] 张地平. 地下电磁定位测距方法研究[D]. 成都: 电子科技大学, 2018.

    ZHANG Diping. Research on location method of underground electromagnetic positioning[D]. Chengdu: University of Electronic Science and Technology of China, 2018
    [13] MONTES A R, GUTIERREZ D, MOORE R G, et al. Is high pressure air injection (HPAI) simply a flue-gas flood?[R]. SPE 133206, 2010.
    [14] REN S R, GREAVES M, RATHBONE R R. Air injection LTO process: an IOR technique for light-oil reservoirs[J]. Society of Petroleum Engineers Journal, 2002, 7(1): 90–99.
    [15] CLARA C, DURANDEAU M, QUENAULT G, et al. Laboratory studies for light oil air injection projects: potential application in Handil Field[J]. SPE Reservoir Evaluation&Engineering, 2000, 3(3): 239–248.
    [16] 王伟伟. 压力对轻质原油氧化动力学参数的影响[J]. 断块油气田,2020,27(1):109–112.

    WANG Weiwei. Influence of pressure on oxidation kinetic parameters of light crude oil[J]. Fault-Block Oil & Gas Field, 2020, 27(1): 109–112.
    [17] 李一波,蒲万芬,王爱香,等. 轻质油藏注空气低温高压氧化实验研究[J]. 石油钻采工艺,2012,34(6):90–92. doi:  10.3969/j.issn.1000-7393.2012.06.026

    LI Yibo, PU Wanfen, WANG Aixiang, et al. Experimental study on low temperature high pressure oxidation in air injection in light oil reservoir[J]. Oil Drilling & Production Technology, 2012, 34(6): 90–92. doi:  10.3969/j.issn.1000-7393.2012.06.026
    [18] 文江波,罗海军,柯兰茜,等. 流动剪切对原油乳化含水率的影响及基于焓的定量表征[J]. 科学技术与工程,2019,19(11):104–107.

    WEN Jiangbo, LUO Haijun, KE Lanxi, et al. Effect of flow shear on water content of crude oil emulsion and quantitative characterization based on enthalpy[J]. Science Technology and Engineering, 2019, 19(11): 104–107.
    [19] 黄咏梅,赵宏伟,盖云飞. 薄层低渗透断块稠油氮气分散降黏增产技术研究与应用[J]. 长江大学学报(自然科学版),2020,17(2):71–77.

    HUANG Yongmei, ZHAO Hongwei, GAI Yunfei. Research and application of technology of reducing viscosity and increasing production of heavy oil by nitrogen dispersion in the fault block reservoir with thin layer and low permeability[J]. Journal of Yangtze University (Natural Science Edition), 2020, 17(2): 71–77.
    [20] ZHANG Lijun, CHENG Shiqiang, YU Haili. Analysis of pressure transient for fractured-vuggy reservoirs with coupling of pipe flow and seepage[C]. International Symposium on Multi-Field Coupling Theory of Rock and Soil Media and Its Applications, 2010: 313–317.
    [21] 张晓,李小波,荣元帅,等. 缝洞型碳酸盐岩油藏周期注水驱油机理[J]. 复杂油气藏,2017,10(2):38–42.

    ZHANG Xiao, LI Xiaobo, RONG Yuanshuai, et al. Mechanism of cyclic water flooding in fiactured-vuggy type carbonate reservoir[J]. Complex Hydrocarbon Reservoirs, 2017, 10(2): 38–42.
  • [1] 胡清富, 谢春来, 田玉栋, 王焕文, 甘建国, 林辉.  伊拉克库尔德A油田原油注氮欠平衡钻井技术, 石油钻探技术. doi: 10.11911/syztjs.2021002
    [2] 张伟, 海刚, 张莹.  塔河油田碳酸盐岩缝洞型油藏气水复合驱技术, 石油钻探技术. doi: 10.11911/syztjs.2019124
    [3] 刘利清, 刘培亮, 蒋林.  塔河油田碳酸盐岩缝洞型油藏量化注水开发技术, 石油钻探技术. doi: 10.11911/syztjs.2019122
    [4] 刘中云, 赵海洋, 王建海, 丁保东.  塔河油田溶洞型碳酸盐岩油藏注入氮气垂向分异速度及横向波及范围研究, 石油钻探技术. doi: 10.11911/syztjs.2019092
    [5] 彭振华, 张园, 丁雯, 任向海, 李晓君, 熊伟.  塔河油田超深超稠油油藏人工举升技术, 石油钻探技术. doi: 10.11911/syztjs.2018094
    [6] 李晓益, 艾爽, 程光明, 张杰, 吴俊霞.  鱼骨刺柔性管在碳酸盐岩缝洞型油藏应用的数值模拟研究, 石油钻探技术. doi: 10.11911/syztjs.201703018
    [7] 张东, 李爱芬, 姚军, 司志梅.  洞-缝-洞介质中水驱油注采规律研究, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2012.04.017
    [8] 姚传进, 雷光伦, 吴川, 高达, 蒋宝云, 刘海庆.  高凝原油井筒温度场影响因素研究, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2011.05.016
    [9] 贾虎, 蒲万芬, 廖然, 袁成东, 汤柏松, 赵若锟.  缝洞型油气藏物理模拟试验方法研究, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2010.06.023
    [10] 赵永强, 闫国亮, 谭猛.  应用Darcy-Stokes方程求解缝洞型介质的渗透率, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2010.04.029
    [11] 薄启炜.  CO2-原油体系饱和压力的测定与预测, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2010.03.023
    [12] 徐轩 杨正明 刘先贵 王学武 杜箫笙.  缝洞型碳酸盐岩油藏的等效连续介质模型, 石油钻探技术.
    [13] 赵凤兰, 岳湘安, 侯吉瑞, 李凯.  碱对复合驱油体系与原油乳化作用的影响, 石油钻探技术.
    [14] 韩忠艳 耿宇迪 赵文娜.  塔河油田缝洞型碳酸盐岩油藏水平井酸压技术, 石油钻探技术.
    [15] 沈国华.  高凝高粘原油井筒粘度计算模型, 石油钻探技术.
    [16] 荣元帅, 黄咏梅, 刘学利, 罗 娟, 李 峰.  塔河油田缝洞型油藏单井注水替油技术研究, 石油钻探技术.
    [17] 孙玉平, 修乃岭, 熊 伟, 高树生, 王学武, 胡志明.  缝洞型碳酸盐岩油藏流动数学模型初探, 石油钻探技术.
    [18] 陈志海, 刘常红, 李 明.  塔河油田缝洞型油藏油井产量的嘴流公式研究, 石油钻探技术.
    [19] 王杰祥, 来轩昂, 王 庆, 高海涛, 孙彦春, 赵卫蕊.  中原油田注空气驱油试验研究, 石油钻探技术.
    [20] 张召平,  翁行芳.  中原油田岩石可钻性与声波时差关系研究, 石油钻探技术.
  • 加载中
图(4) / 表ll (8)
计量
  • 文章访问数:  118
  • HTML全文浏览量:  82
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-13
  • 修回日期:  2021-07-21
  • 网络出版日期:  2021-09-09
  • 刊出日期:  2021-10-18

目录

    /

    返回文章
    返回