适用于低温地层的纳米复合水泥浆体系研究

王胜 谌强 袁学武 华绪 陈礼仪

王胜, 谌强, 袁学武, 华绪, 陈礼仪. 适用于低温地层的纳米复合水泥浆体系研究[J]. 石油钻探技术. doi: 10.11911/syztjs.2021009
引用本文: 王胜, 谌强, 袁学武, 华绪, 陈礼仪. 适用于低温地层的纳米复合水泥浆体系研究[J]. 石油钻探技术. doi: 10.11911/syztjs.2021009
WANG Sheng, CHEN Qiang, YUAN Xuewu, HUA Xu, CHEN Liyi. Study on Nano Composite Cement Slurry System Suitable for Low Temperature Formation[J]. Petroleum Drilling Techniques. doi: 10.11911/syztjs.2021009
Citation: WANG Sheng, CHEN Qiang, YUAN Xuewu, HUA Xu, CHEN Liyi. Study on Nano Composite Cement Slurry System Suitable for Low Temperature Formation[J]. Petroleum Drilling Techniques. doi: 10.11911/syztjs.2021009

适用于低温地层的纳米复合水泥浆体系研究

doi: 10.11911/syztjs.2021009
基金项目: 国家自然科学基金项目“纳米复合水泥浆液低温水化过程与流变凝固特性研究”(编号:41672362)和珠峰科学研究计划项目“青藏高原深部找矿快速绿色智能钻进关键技术研究”(编号:80000-2020ZF11411)部分研究内容
详细信息
    作者简介:

    王胜(1982—),男,重庆黔江人,2004年毕业于成都理工大学勘查技术与工程专业,2007年获成都理工大学地质工程专业硕士学位,2010年获得成都理工大学地质工程专业博士学位,教授,博士生导师,主要从事钻探新技术与新材料研究。E-mail:yongyuandewangsheng@sina.com

  • 中图分类号: TE256+.1

Study on Nano Composite Cement Slurry System Suitable for Low Temperature Formation

  • 摘要: 为解决低温地层钻探过程中的井壁坍塌和井漏问题,研制了适用于低温地层的纳米复合水泥浆体系。采用宏观试验与微观分析相结合的方法,研究了低温下纳米Al2O3对硅酸盐–硫铝酸盐复合水泥浆性能和水化过程的影响;以普通硅酸盐水泥与硫铝酸盐水泥复合产生的水化协同效应为基础,结合纳米Al2O3、防冻剂EG、减水剂JS-1和早强剂TEOA,研发了纳米复合水泥浆体系NAC;采用扫描电镜、X射线衍射和水化放热试验相结合的方法,研究了NAC的低温水化过程及水化机理。试验得知,温度为–9 ℃时,纳米复合水泥浆具有良好的初始流动性,可泵期为57 min,初、终凝时间分别为84和101 min,24 h后的抗压强度为6.9 MPa。研究结果表明,NAC具有直角稠化效应,低温下性能优越,能够满足钻进低温地层时的护壁堵漏要求。
  • 图  1  不同配方浆液的流动性与泵送时间对比

    Figure  1.  Comparison of fluidity and pumping time of different formulations

    图  2  不同配方在不同低温下黏度变化特性对比

    Figure  2.  Comparison of viscosity change characteristics of different formulations at different low temperatures

    图  3  不同养护时间的NAC和CC样品SEM对比

    Figure  3.  SEM comparison of NAC and CC samples with different curing time

    图  4  NAC养护不同时间后放大不同倍数的电镜图

    Figure  4.  SEM of NAC at different magnifications

    图  5  NAC和CC养护不同时间的XRD分析结果

    Figure  5.  XRD analysis of NAC and CC for different curing time

    图  6  水泥浆水化过程中的放热曲线

    Figure  6.  Hydration heat release curves of the hydration process of the two formulas

    表  1  纳米Al2O3对复合水泥浆性能的影响试验结果

    Table  1.   Effect of Nano Al2O3 on the Performance of Composite Cement Paste

    纳米Al2O3
    加量,%
    初始流动度/
    cm
    可泵期/
    min
    初凝时间/
    min
    终凝时间/
    min
    24 h抗压
    强度/MPa
    0 2126401063.3
    0.12338651195.7
    0.3222951 996.2
    0.5201350 975.8
    下载: 导出CSV

    表  2  减水剂对纳米复合水泥浆性能的影响试验结果

    Table  2.   Effect of water reducing agent on the properties of nano-composite cement slurry

    减水剂加量,
    %
    初始流动度/
    cm
    可泵期/
    min
    初凝时间/
    min
    终凝时间/
    min
    22.029 5199
    JS-10.127.043144197
    0.335.0103 265354
    0.533.089186246
    NS0.126.097224641
    0.327.0168 1 143 1 472
    0.529.0229 9571 383
    PAS0.128.053212517
    0.332.079267678
    0.534.581186450
    下载: 导出CSV

    表  3  早强剂对纳米复合水泥浆性能的影响试验结果

    Table  3.   Effect of early strength agent on the properties of nano-composite cement slurry

    早强剂加量,
    %
    初始流动
    度/cm
    可泵期/
    min
    初凝时
    间/min
    终凝时
    间/min
    24 h抗压
    强度/MPa
    33.0891862466.1
    TEOA0.0232.0751141357.8
    0.0630.067 941058.2
    0.1033.0811261727.6
    CaCl21.0032.0184 3294574.6
    3.0029.5104 2313515.1
    5.0030.0117 2733644.8
    Na2SO40.5031.552 77 966.3
    1.5031.043 72 996.5
    2.5030.537 64 896.7
    下载: 导出CSV

    表  4  NAC的正交试验结果(–9 ℃)

    Table  4.   Results of orthogonal test of NAC (–9 ℃)

    序号ABCD初始流动度/cm可泵期/min凝结时间/min24 h抗压强度/MPa
    初凝终凝
    10.50.2%0.05%0.4%27.052 881219.3
    20.50.3%0.06%0.5%31.0531592089.1
    30.50.4%0.07%0.6%29.563 75 899.4
    40.60.2%0.06%0.6%31.0601392197.7
    50.60.3%0.07%0.4%30.558 801548.1
    60.60.4%0.05%0.5%30.5601442388.8
    70.70.2%0.07%0.5%35.0921562316.8
    80.70.3%0.05%0.6%33.0751782347.3
    90.70.4%0.06%0.4%31.0521992267.5
    下载: 导出CSV
  • [1] 牛洪波,于政廉,孙菁,等. 天然气水合物动力学抑制剂与水分子相互作用研究[J]. 石油钻探技术,2019,47(4):29–34. doi:  10.11911/syztjs.2019037

    NIU Hongbo, YU Zhenglian, SUN Jing, et al. The interaction between gas hydrate kinetics inhibitors and water molecules[J]. Petroleum Drilling Techniques, 2019, 47(4): 29–34. doi:  10.11911/syztjs.2019037
    [2] 张川,王胜,陈礼仪,等. 用于冻土区天然气水合物钻探的聚合物钻井液低温流变响应[J]. 天然气工业,2016,36(2):92–97. doi:  10.3787/j.issn.1000-0976.2016.02.013

    ZHANG Chuan, WANG Sheng, CHEN Liyi, et al. Low-temperature rheological response characteristics of the polymer drilling fluid developed for permafrost gas hydrate exploration[J]. Natural Gas Industry, 2016, 36(2): 92–97. doi:  10.3787/j.issn.1000-0976.2016.02.013
    [3] 田野,符军放,宋维凯,等. 一种新型超深水低温早强剂[J]. 钻井液与完井液,2019,36(2):224–228. doi:  10.3969/j.issn.1001-5620.2019.02.016

    TIAN Ye, FU Junfang, SONG Weikai, et al. A new low temperature early strength agent for ultradeep water operation[J]. Drilling Fluid & Completion Fluid, 2019, 36(2): 224–228. doi:  10.3969/j.issn.1001-5620.2019.02.016
    [4] 何瑞兵,董平华,李治衡,等. 生物灰低密度水泥浆体系室内研究[J]. 长江大学学报(自然科学版),2020,17(3):43–47.

    HE Ruibing, DEONG Pinghua, LI Zhiheng, et al. Laboratory study on low temperature and low density cement slurry system of biological ash[J]. Journal of Yangtze University(Natural Science Edition), 2020, 17(3): 43–47.
    [5] 刘浩亚,鲍洪志,赵卫. –18 ℃下冻土区负温水泥浆水化微观过程研究[J]. 钻井液与完井液,2019,36(1):77–81. doi:  10.3969/j.issn.1001-5620.2019.01.015

    LIU Haoya, BAO Hongzhi, ZHAO Wei. Study on microscopic hydration process of a cold temperature cement slurry used in Frozen Areas at –18 ℃[J]. Drilling Fluid & Completion Fluid, 2019, 36(1): 77–81. doi:  10.3969/j.issn.1001-5620.2019.01.015
    [6] 丁向群,赵欣悦,徐晓婉,等. 矿物掺合料对硫铝酸盐水泥–普通硅酸盐水泥复合体系性能的影响[J]. 新型建筑材料,2020,47(3):40–44. doi:  10.3969/j.issn.1001-702X.2020.03.011

    DING Xiangqun, ZHAO Xinyue, XU Xiaowan, et al. Effect of admixtures on properties of sulphoaluminate cement-common Portland cement composite system[J]. New Building Materials, 2020, 47(3): 40–44. doi:  10.3969/j.issn.1001-702X.2020.03.011
    [7] 张鑫,邱瑞军,侯淑鹏,等. 硅酸盐-硫铝酸盐水泥混合体系浆液流变特性试验研究[J]. 混凝土,2019(8):72–76, 81. doi:  10.3969/j.issn.1002-3550.2019.08.017

    ZHANG Xin, QIU Ruijun, HOU Shupeng, et al. Experimental study on the rheological behavior of silicate-sulphoaluminate mixed cement system[J]. Concrete, 2019(8): 72–76, 81. doi:  10.3969/j.issn.1002-3550.2019.08.017
    [8] WANG Sheng, WANG Jingfei, YUAN Chaopeng, et al. Development of the nano-composite cement: application in regulating grouting in complex ground conditions[J]. Journal of Mountain Science, 2018, 15(7): 1572–1584. doi:  10.1007/s11629-017-4729-9
    [9] WANG Sheng, JIAN Liming, SHU Zhihong, et al. Preparation, properties and hydration process of low temperature nano-composite cement slurry[J]. Construction and Building Materials, 2019, 205: 434–442. doi:  10.1016/j.conbuildmat.2019.02.049
    [10] 詹培敏,孙斌祥,何智海,等. 纳米碳酸钙对水泥基材料性能影响的研究进展[J]. 硅酸盐通报,2018,37(3):881–887, 910.

    ZHAN Peimin, SUN Binxiang, HE Zhihai, et al. Research progress of effect of nano-calcium carbonate on the properties of cement-based materials[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(3): 881–887, 910.
    [11] ALOMAYRI T. Experimental study of the microstructural and mechanical properties of geopolymer paste with nano material (Al2O3)[J]. Journal of Building Engineering, 2019, 25: 100788. doi:  10.1016/j.jobe.2019.100788
    [12] LU Xiaolei, YE Zhengmao, ZHANG Lina, et al. The influence of ethanol- diisopropanolamine on the hydration and mechanical properties of Portland cement[J]. Construction and Building Materials, 2017, 135: 484–489. doi:  10.1016/j.conbuildmat.2016.12.191
    [13] 姚嘉诚,延永东,徐鹏飞,等. 水泥基渗透结晶型防水材料和纳米二氧化硅改性混凝土自修复性能的研究[J]. 硅酸盐通报,2020,39(6):1772–1777.

    YAO Jiacheng, YAN Yongdong, XU Pengfei, et al. Self-healing properties of concrete modified by cementitious capillary crystalline waterproofing and nano-silica[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(6): 1772–1777.
    [14] SINGH N B, SARVAHI R, SINGH N P, et al. Effect of temperature on the hydration of ordinary Portland cement in the presence of a superplasticizer[J]. Thermochim Acta, 1994, 247(2): 381–388. doi:  10.1016/0040-6031(94)80138-X
    [15] HU Qinang, ABOUSTAIT M, KIM T, et al. Direct three-dimensional observation of the microstructure and chemistry of C3S hydration[J]. Cement and Concrete Research, 2016, 88: 157–169. doi:  10.1016/j.cemconres.2016.07.006
    [16] BERGER S, COUMES C C D, BESCOP P L, et al. Influence of a thermal cycle at early age on the hydration of calcium sulphoaluminate cements with variable gypsum contents[J]. Cement and Concrete Research, 2011, 41(2): 149–160. doi:  10.1016/j.cemconres.2010.10.001
    [17] LI Laibo, CHEN Mingxu, GUO Xiangyang, et al. Early-age hydration characteristics and kinetics of Portland cement pastes with super low w/c ratios using ice particles as mixing water[J]. Journal of Materials Research and Technology, 2020, 9(4): 8407–8428. doi:  10.1016/j.jmrt.2020.05.082
    [18] TELESCA A, MARROCCOLI M, PACE M L, et al. A hydration study of various calcium sulphoaluminate cements[J]. Cement and Concrete Composites, 2014, 53: 224–232. doi:  10.1016/j.cemconcomp.2014.07.002
  • [1] 李公让, 于雷, 刘振东, 李卉, 明玉广.  弹性孔网材料的堵漏性能评价及现场应用, 石油钻探技术. 2021, 49(2): 48-53. doi: 10.11911/syztjs.2021008
    [2] 谢春来, 胡清富, 张凤臣, 白忠卫, 尹传铭, 司小东.  伊拉克哈法亚油田Mishrif组碳酸盐岩储层防漏堵漏技术, 石油钻探技术. 2021, 49(1): 41-46. doi: 10.11911/syztjs.2020125
    [3] 周双君, 朱立鑫, 杨森, 毛俊, 李萧杰, 黄维安.  吉木萨尔页岩油区块防漏堵漏技术, 石油钻探技术. 2021, 49(4): 66-70. doi: 10.11911/syztjs.2021034
    [4] 王涛, 刘锋报, 罗威, 晏智航, 陆海瑛, 郭斌.  塔里木油田防漏堵漏技术进展与发展建议, 石油钻探技术. 2021, 49(1): 28-33. doi: 10.11911/syztjs.2020080
    [5] 彭兴, 周玉仓, 朱智超, 王军锋.  延川南深部煤层气井防漏堵漏技术, 石油钻探技术. 2021, 49(1): 47-52. doi: 10.11911/syztjs.2020133
    [6] 王宴滨, 张辉, 高德利, 柯珂, 刘文红.  低温环境下钻柱材料力学特性试验及强度设计, 石油钻探技术. 2021, 49(3): 35-41. doi: 10.11911/syztjs.2021051
    [7] 刘浩亚, 鲍洪志, 刘亚青, 何青水, 胡志强, 金鑫.  改性高铝水泥浆的负温硬化性能及其增强机制, 石油钻探技术. 2021, 49(2): 54-60. doi: 10.11911/syztjs.2020129
    [8] 张逸群, 于超, 程光明, 宋先知, 赵克贤.  聚能筑巢堵漏用金属割缝管爆炸成形数值模拟及试验研究, 石油钻探技术. 2020, 48(6): 54-60. doi: 10.11911/syztjs.2020107
    [9] 杨仲涵, 罗鸣, 陈江华, 许发宾, 徐靖.  莺歌海盆地超高温高压井挤水泥承压堵漏技术, 石油钻探技术. 2020, 48(3): 47-51. doi: 10.11911/syztjs.2020012
    [10] 田军, 刘文堂, 李旭东, 刘云飞, 郭建华.  快速滤失固结堵漏材料ZYSD的研制及应用, 石油钻探技术. 2018, 46(1): 49-54. doi: 10.11911/syztjs.2018011
    [11] 何新星, 李皋, 段慕白, 杨旭, 徐欢欢, 谢强.  地层裂缝动态变形对堵漏效果的影响研究, 石油钻探技术. 2018, 46(4): 65-70. doi: 10.11911/syztjs.2018121
    [12] 刘金华, 刘四海, 龙大清, 陈曾伟, 靳瑞环.  明1井交联成膜与化学固结承压堵漏技术, 石油钻探技术. 2017, 45(2): 54-60. doi: 10.11911/syztjs.201702009
    [13] 刘云, 王涛, 于小龙, 牛萌.  延长油田西部地区低压易漏地层固井技术, 石油钻探技术. 2017, 45(4): 53-58. doi: 10.11911/syztjs.201704009
    [14] 刘文堂, 郭建华, 李午辰, 琚留柱, 李彬.  球状凝胶复合封堵剂的研制与应用, 石油钻探技术. 2016, 44(2): 34-39. doi: 10.11911/syztjs.201602006
    [15] 杨力.  彭水区块页岩气水平井防漏堵漏技术探讨, 石油钻探技术. 2013, 41(5): 16-20. doi: 10.3969/j.issn.1001-0890.2013.05.003
    [16] 初永涛.  MS型堵漏隔离液的研究与应用, 石油钻探技术. 2013, 41(3): 89-93. doi: 10.3969/j.issn.1001-0890.2013.03.017
    [17] 郭胜来, 李建华, 步玉环.  低温下物理和化学激发对矿渣活性的影响研究, 石油钻探技术. 2013, 41(3): 31-34. doi: 10.3969/j.issn.1001-0890.2013.03.006
    [18] 毛惠, 邱正松, 黄维安, 沈忠厚, 杨丽媛, 钟汉毅.  温度和压力对黏土矿物水化膨胀特性的影响, 石油钻探技术. 2013, 41(6): 56-61. doi: 10.3969/j.issn.1001-0890.2013.06.011
    [19] 胡友林, 乌效鸣, 岳前升, 刘书杰.  深水钻井气制油合成基钻井液室内研究, 石油钻探技术. 2012, 40(6): 38-42. doi: 10.3969/j.issn.1001-0890.2012.06.008
    [20] 王宏超.  低密度膨胀型堵漏浆在湘页1井的应用, 石油钻探技术. 2012, 40(4): 43-46. doi: 10.3969/j.issn.1001-0890.2012.04.009
  • 加载中
图(6) / 表ll (4)
计量
  • 文章访问数:  85
  • HTML全文浏览量:  67
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-27
  • 修回日期:  2021-07-12
  • 网络出版日期:  2021-07-28

目录

    /

    返回文章
    返回